A Prediction Method for Wind Speed Based on the Correlation Analysis of Measured Data of Adjacent Wind Turbine

Author(s):  
Yinsong Wang ◽  
Ziqing Su
Author(s):  
Abdellah Benallal ◽  
◽  
Nawel Cheggaga ◽  

Renewable energy hybrid systems give a good solution in isolated sites, in the Algerian desert; wind and solar potentials are considerably perfect for a combination in a renewable energy hybrid system to satisfy local village electrical load and minimize the storage requirements, which leads to reduce the cost of the installation. For a good sizing, it is essential to know accurately the solar potential of the installation area also wind potential at the same height where wind electric generators will be placed. In this work, we optimize a completely autonomous PV-wind hybrid system and show the techno-economical effects of the height of the wind turbine on the sizing of the hybrid system. We also compare the simulation results obtained from using wind speed measured data at 10 meters and 40 meters of height with the ones obtained from using wind speed extrapolation on HOMER software.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 300 ◽  
Author(s):  
Guilin Liu ◽  
Baiyu Chen ◽  
Zhikang Gao ◽  
Hanliang Fu ◽  
Song Jiang ◽  
...  

For better displaying the statistical properties of measured data, it is particularly important to select a suitable multivariate joint distribution model in ocean engineering. According to the characteristics and properties of Copula functions and the correlation analysis of measured data, the nonlinear relationship between random variables can be captured. Additionally, the models based on the Copula theory have more general applicability. A series of correlation measure index, derived from Copula functions, can expand the correlation measure range among variables. In this paper, by means of the correlation analysis between the annual extreme wave height and the corresponding wind speed, their joint distribution models were studied. The newly established two-dimensional joint distribution functions of the extreme wave height and the corresponding wind speed were compared with the existing two-dimensional joint distributions.


2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

Sign in / Sign up

Export Citation Format

Share Document