Dynamic behavior of DFIG based wind turbine under fixed and variable wind speed

2018 ◽  
Vol 6 (12) ◽  
pp. 113-117
Author(s):  
Jignesh B Bhati ◽  
Chirag T Patel
2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Bhavana Valeti ◽  
Shamim N. Pakzad

Rotor blades are the most complex structural components in a wind turbine and are subjected to continuous cyclic loads of wind and self-weight variation. The structural maintenance operations in wind farms are moving towards condition based maintenance (CBM) to avoid premature failures. For this, damage prognosis with remaining useful life (RUL) estimation in wind turbine blades is necessary. Wind speed variation plays an important role influencing the loading and consequently the RUL of the structural components. This study investigates the effect of variable wind speed between the cutin and cut-out speeds of a typical wind farm on the RUL of a damage detected wind turbine blade as opposed to average wind speed assumption. RUL of wind turbine blades are estimated for different initial crack sizes using particle filtering method which forecasts the evolution of fatigue crack addressing the non-linearity and uncertainty in crack propagation. The stresses on a numerically simulated life size onshore wind turbine blade subjected to the above wind speed loading cases are used in computing the crack propagation observation data for particle filters. The effects of variable wind speed on the damage propagation rates and RUL in comparison to those at an average wind speed condition are studied and discussed.


2012 ◽  
Vol 229-231 ◽  
pp. 2323-2326
Author(s):  
Zong Qi Tan ◽  
Can Can Li ◽  
Hui Jun Ye ◽  
Yu Qiong Zhou ◽  
Hua Ling Zhu

This paper designed the controller of the wind turbine rotor rotating speed. This model of adaptive-PID through control the tip-speed ratio and count the values of PID for variable wind speed. From the result of simulation, the wind speed can run in a good dynamic characteristic, and keep the rotor running in the best tip-speed ratio at the same time.


Energies ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 548 ◽  
Author(s):  
Yingning Qiu ◽  
Hongxin Jiang ◽  
Yanhui Feng ◽  
Mengnan Cao ◽  
Yong Zhao ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 7279-7282
Author(s):  
Α. Guediri ◽  
Α. Guediri

In this article, we will study a system consisting of a wind turbine operating at a variable wind speed and a two-feed asynchronous machine (DFIG) connected to the grid by the stator and fed by a transducer at the rotor side. The conductors are separately controlled for active and reactive power flow between the stator (DFIG) and the network, which is achieved using conventional PI and fuzzy logic. The proposed controllers generate reference voltages for the rotor to ensure that the active and reactive powers reach the required reference values, in order to ensure effective tracking of the optimum operating point and to obtain the maximum electrical power output. System modeling and simulation were examined with Matlab. Dynamic analysis of the system is performed under variable wind speed. This analysis is based on active and reactive energy control. The results obtained show the advantages of the proposed intelligent control unit.


Author(s):  
Wei Sun ◽  
Tao Chen ◽  
Jing Wei

Owing to the characteristics of the variable wind speed and small gear samples, the gear reliability of a wind turbine gearbox is hard to predict. In order to solve this problem, a complete reliability prediction model is presented in this article. Firstly, distribution parameters of the gear stress are deduced according to the variable wind data, and a linear path is defined for the time-varying stress. Next, historical gear samples are transformed into the equivalent prior data by grey relational analysis and then the posterior data is deduced by Bayes data fusion. Then, distribution parameters and a non-linear path are determined for the time-varying gear strength. After that, the dynamic reliability of gears in a wind turbine gearbox is calculated on the basis of the stress–strength interference model and the Monte Carlo sampling. Lastly, an instance is given to verify the validity of this model. The result shows that the variable wind speed will decline the reliability of wind gears, in addition, the reliability declines faster than its expectation in the infant mortality period.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6807
Author(s):  
Henok Ayele Behabtu ◽  
Thierry Coosemans ◽  
Maitane Berecibar ◽  
Kinde Anlay Fante ◽  
Abraham Alem Kebede ◽  
...  

The risk of oscillation of grid-connected wind turbine generators (WTGs) is well known, making it all the more important to understand the characteristics of different WTGs and analyze their performance so that the problems’ causes are identified and resolved. While many studies have evaluated the performance of grid-connected WTGs, most lack clarity and precision in the modeling and simulation techniques used. Moreover, most of the literature focuses on a single mode of operation of WTGs to analyze their performances. Therefore, this paper updates the literature by considering the different operating conditions for WTGs. Using MATLAB/SIMULINK it expands the evaluation to the full range of vulnerabilities of WTGs: from the wind turbine to grid connection. A network representing grid-connected squirrel-cage induction generator (SCIG) and doubly-fed induction generator (DFIG) wind turbines are selected for simulation. The performances of SCIG and DFIG wind turbines are evaluated in terms of their energy generation capacity during constant rated wind speed, variable wind speed, and ability of fault-ride through during dynamic system transient operating conditions. The simulation results show the performance of DFIG is better than SCIG in terms of its energy generation capacity during variable wind speed conditions and active and reactive power control capability during steady-state and transient operating conditions. As a result, DFIG wind turbine is more suitable for large-scale wind power plants connected to weak utility grid applications than SCIG.


Author(s):  
Mahmoud M. El-Sharkawy ◽  
Mahmoud A. Attia ◽  
Almoataz Y. Abdelaziz

This paper discussed how wind farm disturbance, especially wind speed variability, can affect the performance of the power system. Also, it discussed how blades angels of wind turbine can be controlled to increase the energy efficacy of the power system. It showed that the optimized pitch angel controller using harmony search algorithm could enhance blades angels’ adjustments performance. First part, the paper explained the advantages of doubly fed induction generator in wind turbine system. Paper also enumerated the most probable ways to tame the wind speed variability challenge focusing on the pitch angle controller technique. After that, paper compared the system parameter`s result before optimization with values after optimized pitch angle controller gain (Kp). This comparison would be held in three cases, case of variable wind speed with normal operation condition, constant wind speed with line to ground fault condition and variable wind speed with line to ground fault condition. Finally, It demonstrated the MATLAB/SIMULINK model used illustrating results appeared and conclusion.


Sign in / Sign up

Export Citation Format

Share Document