The Socioecological Implications of Land Use and Landscape Change in the Brazilian Amazon

Author(s):  
Ima C. G. Vieira ◽  
Peter M. de Toledo ◽  
S. O. Araújo Roberto
2008 ◽  
Vol 18 (3) ◽  
pp. 327-344
Author(s):  
Koen P Overmars ◽  
Peter H Verburg ◽  
Martha M Baker ◽  
Igor Staritsky ◽  
Fritz Hellmann

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Júnior Melo Damian ◽  
Mariana Regina Durigan ◽  
Maurício Roberto Cherubin ◽  
Stoécio Malta Ferreira Maia ◽  
Stephen M. Ogle ◽  
...  

2021 ◽  
Vol 108 ◽  
pp. 103224
Author(s):  
Tárcio Rocha Lopes ◽  
Cornélio Alberto Zolin ◽  
Rafael Mingoti ◽  
Laurimar Gonçalves Vendrusculo ◽  
Frederico Terra de Almeida ◽  
...  

2013 ◽  
Vol 368 (1619) ◽  
pp. 20120171 ◽  
Author(s):  
Gillian L. Galford ◽  
Britaldo Soares-Filho ◽  
Carlos E. P. Cerri

The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes.


2018 ◽  
Vol 24 (2) ◽  
pp. 250-269 ◽  
Author(s):  
João Arthur Pompeu Pavanelli ◽  
João Roberto dos Santos ◽  
Lênio Soares Galvão ◽  
Maristela Xaud ◽  
Haron Abrahim Magalhães Xaud

Abstract: In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah.


2008 ◽  
Vol 46 (10) ◽  
pp. 2956-2970 ◽  
Author(s):  
Corina da Costa Freitas ◽  
Luciana de Souza Soler ◽  
Sidnei JoÃo Siqueira Sant'Anna ◽  
Luciano Vieira Dutra ◽  
JoÃo Roberto dos Santos ◽  
...  

2020 ◽  
Vol 12 (9) ◽  
pp. 1413 ◽  
Author(s):  
Beatriz Bellón ◽  
Julien Blanco ◽  
Alta De Vos ◽  
Fabio de O. Roque ◽  
Olivier Pays ◽  
...  

Remote sensing tools have been long used to monitor landscape dynamics inside and around protected areas. Hereto, scientists have largely relied on land use and land cover (LULC) data to derive indicators for monitoring these dynamics, but these metrics do not capture changes in the state of vegetation surfaces that may compromise the ecological integrity of conservation areas’ landscapes. Here, we introduce a methodology that combines LULC change estimates with three Normalized Difference Vegetation Index-based proxy indicators of vegetation productivity, phenology, and structural change. We illustrate the utility of this methodology through a regional and local analysis of the landscape dynamics in the Cerrado Biome in Brazil in 2001 and 2016. Despite relatively little natural vegetation loss inside core protected areas and their legal buffer zones, the different indicators revealed significant LULC conversions from natural vegetation to farming land, general productivity loss, homogenization of natural forests, significant agricultural expansion, and a general increase in productivity. These results suggest an overall degradation of habitats and intensification of land use in the studied conservation area network, highlighting serious conservation inefficiencies in this region and stressing the importance of integrated landscape change analyses to provide complementary indicators of ecologically-relevant dynamics in these key conservation areas.


2020 ◽  
Author(s):  
Marie E. Kroeger ◽  
Laura K. Meredith ◽  
Kyle M. Meyer ◽  
Kevin D. Webster ◽  
Plinio Barbosa de Camargo ◽  
...  

ABSTRACTThe Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink that is threatened by agricultural conversion. Rainforest-to-pasture conversion leads to the release of a potent greenhouse gas by converting soil from a methane sink into a source. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could explain the greater methane flux. Furthermore, we found that secondary rainforests recovered as methane sinks, indicating the potential for reforestation to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.


2014 ◽  
pp. 265-276 ◽  
Author(s):  
Gerald J. Niemi ◽  
Lucinda B. Johnson ◽  
Robert W. Howe

Sign in / Sign up

Export Citation Format

Share Document