2011 ◽  
Vol 48-49 ◽  
pp. 541-546 ◽  
Author(s):  
Dian Zhu Sun ◽  
Xin Cai Kang ◽  
Yan Rui Li ◽  
Yong Wei Sun

To achieve the accurate and efficient NC milling simulation based on the discrete triangular mesh model, we proposed an algorithm for geometric modeling and intersection. We construct the R*-tree index for upper-surface nodes of mesh model, based on which the nodes within cutting region can be obtained. We compute tool path segments within cutting projection region of node, and calculate the minimum adjustment height of node according to tool path segments within cutting projection region and then change the z-value of node. Thus, we complete the intersection calculation in simulation process. It has been proved by examples that the algorithm for geometric modeling and intersection in NC milling simulation has strong adaptation to tool path segment type and that it can accurately and efficiently reflect the effect of NC simulation process based on the discrete triangular mesh model of rough.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Ligang Yao ◽  
Bing Gu ◽  
Shujuan Haung ◽  
Guowu Wei ◽  
Jian S. Dai

The purpose of this paper is to propose a pair of external and internal spiral bevel gears with double circular-arc in the nutation drive. Based on the movement of nutation, this paper develops equations of the tooth profiles for the gear set, leading to the mathematical modeling of the spiral bevel gear with a constant helical angle gear alignment curve, enabling the tooth surface to be generated, and permitting the theoretical contacting lines to be produced in light of the meshing function. Simulation and verification are carried out to prove the mathematical equations. Numerical control (NC) simulation of machining the external and internal double circular-arc spiral bevel gears is developed, and the spiral gears were manufactured on a NC milling machine. The prototype of the nutation drive is illustrated in the case study at the end of this paper.


Author(s):  
Adam Jacso ◽  
Tibor Szalay ◽  
Juan Carlos Jauregui ◽  
Juvenal Rodriguez Resendiz

Many applications are available for the syntactic and semantic verification of NC milling tool paths in simulation environments. However, these solutions – similar to the conventional tool path generation methods – are generally based on geometric considerations, and for that reason they cannot address varying cutting conditions. This paper introduces a new application of a simulation algorithm that is capable of producing all the necessary geometric information about the machining process in question for the purpose of further technological analysis. For performing such an analysis, an image space-based NC simulation algorithm is recommended, since in the case of complex tool paths it is impossible to provide an analytical description of the process of material removal. The information obtained from the simulation can be used not only for simple analyses, but also for optimisation purposes with a view to increasing machining efficiency.


2013 ◽  
Vol 670 ◽  
pp. 119-122
Author(s):  
W.G. Du ◽  
Y.Y. Guo ◽  
C. Zhao

Machining with five-axis equipment can offer manufactures many advantages, including dramatically reduced setup times, lower costs per part, more accurate machining and improved part quality. While in five-axis machining, the tool axis changes frequently, even the most experienced engineers are difficult to judge the correctness of its tool path. So in this paper, taking five-axis machine tools as the prototype, the process of building NC simulation platform was introduced by using simulation software VERICUT. After that, it introduced simulation operations, verifying the simulation platform and data simulation function. Finally, the correctness of the simulation was verified by machining experiments. Researching CNC machining process on the VERICUT platform, the research results were used in five-axis machining simulation of integrated impeller and it improved both the process capacity and efficiency of the integrated impeller greatly. This method obtained in this paper could eliminate the colliding and interference phenomenon during test cut, reduce costs, improve the efficiency of programming and shorten the manufacturing period.


2009 ◽  
Vol 46 (5-8) ◽  
pp. 465-490 ◽  
Author(s):  
K. P. Karunakaran ◽  
Rohitashwa Shringi ◽  
Deepak Ramamurthi ◽  
C. Hariharan

2014 ◽  
Vol 912-914 ◽  
pp. 1548-1551
Author(s):  
Mei Lan Bao

Our country is manufacturing industry power in the world, NC machining is used in mechanical manufacturing industry widesprealy. With the development of manufacturing industry, NC machining strides forward super-speed machining step by step. In order to achieve the machining requirement of speediness and high-precision of complex parts, automatic programming becomes the main programming pattern of NC programming. Ensuring validity and optimizing of NC programs is fundamental demand of automatic programming. So as to test validity and optimizing of NC programs, NC simulation is obtained widespread use in the process of programming.


Author(s):  
John C. J. Chiou ◽  
Yuan-Shin Lee

This paper presents a swept envelope approach to determining the optimal tool orientation for five-axis tool-end machining. The swept profile of the cutter is determined based on the tool motion. By analyzing the swept profile against the part geometry, four types of machining errors (local gouge, side gouge, rear gouge, and global collision) are identified. The tool orientation is then corrected to avoid such errors. The cutter’s swept envelope is further constructed by integrating the intermediate swept profiles, and can be applied to NC simulation and verification. This paper presents the explicit solution for the swept profile of a general cutter in five-axis tool-end machining. The relation of the swept profile, the part geometry, the tool motion, and the machining errors is developed. Therefore, the error sources can be detected early and prevented during tool path planning. The analytical results indicate that the optimal tool orientation occurs when the curvature of the cutter’s swept profile matches with the curvature of the local part surface. In addition, the optimal cutting direction generally follows the minimum curvature direction. Computer illustrations and example demonstrations are shown in this paper. The results reveal the developed method can accurately determine the optimal tool orientation and efficiently avoid machining errors for five-axis tool-end machining.


Sign in / Sign up

Export Citation Format

Share Document