Direct Simulation of Unsteady Flow in a Three-Dimensional Lid-Driven Cavity

Author(s):  
B. Cantaloube ◽  
T. H. Lê
1992 ◽  
Vol 114 (1) ◽  
pp. 79-90 ◽  
Author(s):  
O. P. Sharma ◽  
G. F. Pickett ◽  
R. H. Ni

The impacts of unsteady flow research activities on flow simulation methods used in the turbine design process are assessed. Results from experimental investigations that identify the impact of periodic unsteadiness on the time-averaged flows in turbines and results from numerical simulations obtained by using three-dimensional unsteady Computational Fluid Dynamics (CFD) codes indicate that some of the unsteady flow features can be fairly accurately predicted. Flow parameters that can be modeled with existing steady CFD codes are distinguished from those that require unsteady codes.


2002 ◽  
Vol 450 ◽  
pp. 67-95 ◽  
Author(s):  
CH. BLOHM ◽  
H. C. KUHLMANN

The incompressible fluid flow in a rectangular container driven by two facing sidewalls which move steadily in anti-parallel directions is investigated experimentally for Reynolds numbers up to 1200. The moving sidewalls are realized by two rotating cylinders of large radii tightly closing the cavity. The distance between the moving walls relative to the height of the cavity (aspect ratio) is Γ = 1.96. Laser-Doppler and hot-film techniques are employed to measure steady and time-dependent vortex flows. Beyond a first threshold robust, steady, three-dimensional cells bifurcate supercritically out of the basic flow state. Through a further instability the cellular flow becomes unstable to oscillations in the form of standing waves with the same wavelength as the underlying cellular flow. If both sidewalls move with the same velocity (symmetrical driving), the oscillatory instability is found to be tricritical. The dependence on two sidewall Reynolds numbers of the ranges of existence of steady and oscillatory cellular flows is explored. Flow symmetries and quantitative velocity measurements are presented for representative cases.


1984 ◽  
Vol 106 (4) ◽  
pp. 390-398 ◽  
Author(s):  
J. R. Koseff ◽  
R. L. Street

A synthesis of observations of flow in a three-dimensional lid-driven cavity is presented through the use of flow visualization pictures and velocity and heat flux measurements. The ratio of the cavity depth to width used was 1:1 and the span to width ratio was 3:1. Flow visualization was accomplished using the thymol blue technique and by rheoscopic liquid illuminated by laser-light sheets. Velocity measurements were made using a two-component laser-Doppler-anemometer and the heat flux on the lower boundary of the cavity was measured using flush mounted sensors. The flow is three-dimensional and is weaker at the symmetry plane than that predicted by accurate two-dimensional numerical simulations. Local three-dimensional features, such as corner vortices in the end-wall regions and longitudinal Taylor-Go¨rtler-like vortices, are significant influences on the flow. The flow is unsteady in the region of the downstream secondary eddy at higher Reynolds numbers (Re) and exhibits turbulent characteristics in this region at Re = 10,000.


Author(s):  
Lioua Kolsi ◽  
Hakan F. Öztop ◽  
Nidal Abu-Hamdeh ◽  
Borjini Mohamad Naceur ◽  
Habib Ben Assia

Purpose The main purpose of this work is to arrive at a three-dimensional (3D) numerical solution on mixed convection in a cubic cavity with a longitudinally located triangular fin in different sides. Design/methodology/approach The 3D governing equations are solved via finite volume technique by writing a code in FORTRAN platform. The governing parameters are chosen as Richardson number, 0.01 ≤ Ri ≤ 10 and thermal conductivity ratio 0.01 ≤ Rc ≤ 100 for fixed parameters of Pr = 0.7 and Re = 100. Two cases are considered for a lid-driven wall from left to right (V+) and right to left (V−). Findings It is observed that entropy generation due to heat transfer becomes dominant onto entropy generation because of fluid friction. The most important parameter is the direction of the moving lid, and lower values are obtained when the lid moves from right to left. Originality The main originality of this work is to arrive at a solution of a 3D problem of mixed convection and entropy generation for lid-driven cavity with conductive triangular fin attachments.


2000 ◽  
Author(s):  
B. V. Rathish Kumar ◽  
T. Yamaguchi ◽  
H. Liu ◽  
R. Himeno

Abstract Unsteady flow dynamics in a doubly constricted vessel is analyzed by using a time accurate Finite Volume solution of three dimensional incompressible Navier-Stokes equations. Computational experiments are carried out for various values of Reynolds number in order to assess the criticality of multiple mild constrictions in series and also to bring out the subtle 3D features like vortex formation. Studies reveal that pressure drop across a series of mild constrictions can get physiologically critical. Further this pressure drop is found to be sensitive to the spacing between the constrictions and also to the oscillatory nature of the inflow profile.


Sign in / Sign up

Export Citation Format

Share Document