Proteolytic cleavage of the N-terminal region of potyvirus coat protein and its relation to host recovery and vector transmission

Author(s):  
R. Salomon
2009 ◽  
Vol 22 (10) ◽  
pp. 1302-1311 ◽  
Author(s):  
V. Decroocq ◽  
B. Salvador ◽  
O. Sicard ◽  
M. Glasa ◽  
P. Cosson ◽  
...  

In Arabidopsis thaliana Columbia (Col-0) plants, the restriction of Tobacco etch virus (TEV) long-distance movement involves at least three dominant RTM (restricted TEV movement) genes named RTM1, RTM2, and RTM3. Previous work has established that, while the RTM-mediated resistance is also effective against other potyviruses, such as Plum pox virus (PPV) and Lettuce mosaic virus (LMV), some isolates of these viruses are able to overcome the RTM mechanism. In order to identify the viral determinant of this RTM-resistance breaking, the biological properties of recombinants between PPV-R, which systemically infects Col-0, and PPV-PSes, restricted by the RTM resistance, were evaluated. Recombinants that contain the PPV-R coat protein (CP) sequence in an RTM-restricted background are able to systemically infect Col-0. The use of recombinants carrying chimeric CP genes indicated that one or more PPV resistance-breaking determinants map to the 5′ half of the CP gene. In the case of LMV, sequencing of independent RTM-breaking variants recovered after serial passages of the LMV AF199 isolate on Col-0 plants revealed, in each case, amino acid changes in the CP N-terminal region, close to the DAG motif. Taken together, these findings demonstrate that the potyvirus CP N-terminal region determines the outcome of the interaction with the RTM-mediated resistance.


2006 ◽  
Vol 151 (10) ◽  
pp. 1973-1983 ◽  
Author(s):  
V. Pantaleo ◽  
F. Grieco ◽  
A. Di Franco ◽  
G. P. Martelli

1997 ◽  
Vol 69 (1-2) ◽  
pp. 181-189 ◽  
Author(s):  
A Crescenzi ◽  
L d'Aquino ◽  
M Nuzzaci ◽  
A Ostuni ◽  
A Bavoso ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2133-2133
Author(s):  
Jingyu Zhang ◽  
Zhenni Ma ◽  
Ningzheng Dong ◽  
Jian Su ◽  
Anyou Wang ◽  
...  

Abstract Abstract 2133 Poster Board II-110 Introduction: In our former study, we have found that SZ-34, a monoclonal antibody to Von Willebrand factor (VWF), can inhibit the proteolysis of VWF by ADAMTS13 under shear stress. But the precise epitope of this antibody (SZ-34) on VWF is not clear for it is generated by immunizing mouse with native full-length VWF purified from pooled human normal plasmas. Thus, the objective of this study is to map the epitope of SZ-34 and to explore the effect of VWF structrue on the proteolytic activity by ADAMTS13. Materials and Methods: Firstly we constructed and expressed a series of recombinant proteins of different domains or polypeptide fragments of human VWF in prokaryotic cell expression system, including A1A2A3, D′D3, A1, A2, A3, A1A2, A2A3 and five sub-fragments of A2 domain. Then native VWF and these recombinant proteins or polypeptide fragments were subjected to polyacrylamide gel electrophoresis (PAGE) and analyzed by Western blots with SZ-34. Results: Different recombinant proteins of VWF were successfully expressed and purified. Results of Western blot showed that SZ-34 could bind specifically some recombinant proteins, such as full-length VWF, A1A2A3, A2 and GST-D1459D1596 in which the last was a fusion protein of a sub-fragment of A2 domain with GST. But SZ-34 couldn't bind to others, including A1, A3, D′D3, GST-D1459E1554, GST-E1554D1596, GST-D1596R1668 (VWF73) and GST- E1554R1668. In addition, the reacting activity of SZ-34 with native VWF was significantly stronger than with unfolded VWF, such as heat-treated or 1.5M guanidine hydrochloride-treated VWF. Conclusions: The epitope of SZ-34 is located within N-terminal region fore-VWF73 inside VWF-A2 domain. Besides, SZ-34 maybe is a conformation-specific monoclonal antibody. Combining with our former findings that SZ-34 inhibits the proteolytic cleavage of VWF by ADAMTS13, we can conclude that N-terminal region fore-VWF73 inside VWF-A2 domain also regulates the proteolytic activity of VWF by ADAMTS13, although VWF73 is considered as the minimal substrate for ADAMTS13. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 40 (3) ◽  
pp. 265-273 ◽  
Author(s):  
Kazusato Ohshima ◽  
Takaaki Nakaya ◽  
Alice Kazuko Inoue ◽  
Tatsuji Hataya ◽  
Yoshio Hayashi ◽  
...  

2003 ◽  
Vol 84 (8) ◽  
pp. 2271-2277 ◽  
Author(s):  
C. M. Carvalho ◽  
J. Wellink ◽  
S. G. Ribeiro ◽  
R. W. Goldbach ◽  
J. W. M. van Lent

2013 ◽  
Vol 24 (18) ◽  
pp. 2966-2980 ◽  
Author(s):  
Marcio Fontenele ◽  
Bomyi Lim ◽  
Danielle Oliveira ◽  
Márcio Buffolo ◽  
David H. Perlman ◽  
...  

Calcium-dependent cysteine proteases of the calpain family are modulatory proteases that cleave their substrates in a limited manner. Among their substrates, calpains target vertebrate and invertebrate IκB proteins. Because proteolysis by calpains potentially generates novel protein functions, it is important to understand how this affects NFκB activity. We investigate the action of Calpain A (CalpA) on the Drosophila melanogaster IκB homologue Cactus in vivo. CalpA alters the absolute amounts of Cactus protein. Our data indicate, however, that CalpA uses additional mechanisms to regulate NFκB function. We provide evidence that CalpA interacts physically with Cactus, recognizing a Cactus pool that is not bound to Dorsal, a fly NFκB/Rel homologue. We show that proteolytic cleavage by CalpA generates Cactus fragments lacking an N-terminal region required for Toll responsiveness. These fragments are generated in vivo and display properties distinct from those of full-length Cactus. We propose that CalpA targets free Cactus, which is incorporated into and modulates Toll-responsive complexes in the embryo and immune system.


Virology ◽  
2004 ◽  
Vol 322 (1) ◽  
pp. 118-134 ◽  
Author(s):  
Juan Bárcena ◽  
Nuria Verdaguer ◽  
Ramón Roca ◽  
Mónica Morales ◽  
Iván Angulo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document