vector transmission
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 37)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Kelly T. Rios ◽  
Taylor M. Dickson ◽  
Scott E Lindner

Some early antimalarial drugs have been repurposed for experimental applications, thus extending their utility well beyond the point when resistance becomes prevalent in circulating parasite populations. One such drug is sulfadiazine, which is an analog of p-aminobenzoic acid (pABA), and acts as a competitive inhibitor of dihydropteroate synthase, which is an essential enzyme in the parasite's folate synthesis pathway that is required for DNA synthesis. Sulfadiazine treatment of mice infected with P. yoelii and P. berghei is routinely used to enrich for gametocytes by killing asexual blood stage parasites, but it is not well known if the exposed gametocytes are perturbed or if there is a detrimental effect on transmission. To determine if there was a significant effect of sulfadiazine exposure upon host-to-vector transmission, we transmitted Plasmodium yoelii (17XNL strain) parasites to Anopheles stephensi mosquitoes and evaluated the prevalence of infection (percent of mosquitoes infected) and intensity of infection (number of oocysts per infected mosquito) under different sulfadiazine treatment conditions of the mouse or of the mosquitoes. We observed that parasites exposed to sulfadiazine either in the mouse host or in the mosquito vector had a reduction in both the number of mosquitoes that became infected and in the intensity of infection compared to untreated controls. We also observed that provision of freshly prepared pABA in the mosquito sugar water could only marginally overcome the defects caused by sulfadiazine treatment. In contrast, we determined that gametocytes exposed to sulfadiazine were able to be fertilized and develop into morphologically mature ookinetes in vitro, and thus that sulfadiazine exposure in the host may be reversible if the drug is washed out and the parasites are supplemented with pABA in the culture media. Overall, this indicates that sulfadiazine dampens host-to-vector transmission, and that this inhibition can only be partially overcome by exposure to fresh pABA in vivo and in vitro. Because gametocytes are of great interest for developing transmission blocking interventions, we recommend that less disruptive approaches for gametocyte enrichment be used in order to study minimally perturbed parasites.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Allyson M. Ray ◽  
Sheldon L. Davis ◽  
Jason L. Rasgon ◽  
Christina M. Grozinger

Understanding how vectors alter the interactions between viruses and their hosts is a fundamental question in virology and disease ecology. In honey bees, transmission of deformed wing virus (DWV) by parasitic Varroa mites has been associated with elevated disease and host mortality, and Varroa transmission has been hypothesized to lead to increased viral titres or select for more virulent variants. Here, we mimicked Varroa transmission by serially passaging a mixed population of two DWV variants, A and B, by injection through in vitro reared honey bee pupae and tracking these viral populations through five passages. The DWV-A and DWV-B variant proportions shifted dynamically through passaging, with DWV-B outcompeting DWV-A after one passage, but levels of both variants becoming equivalent by Passage 5. Sequencing analysis revealed a dominant, recombinant DWV-B strain (DWV-A derived 5′ IRES region with the rest of the genome DWV-B), with low nucleotide diversity that decreased through passaging. DWV-A populations had higher nucleotide diversity compared to DWV-B, but this also decreased through passaging. Selection signatures were found across functional regions of the DWV-A and DWV-B genomes, including amino acid mutations in the putative capsid protein region. Simulated vector transmission differentially impacted two closely related viral variants which could influence viral interactions with the host, demonstrating surprising plasticity in vector-host-viral dynamics.


2021 ◽  
Author(s):  
Tad Dallas ◽  
Sadie Jane Ryan ◽  
Ben Bellekom ◽  
Anna Claire Fagre ◽  
Rebecca Christofferson ◽  
...  

The potential for a pathogen to infect a host is mediated by traits of both the host and pathogen, as well as the complex interactions between them. Arthropod-borne viruses (arboviruses) require an intermediate vector, introducing an additional compatibility layer. Existing predictive models of host-virus networks rarely incorporate the unique aspects of vector transmission, instead treating vector biology as a hidden, unobserved layer. We explore two possible extensions to address this: first, we added vector traits into predictions of the bipartite host-virus network; and second, we used host, vector, and virus traits to predict the tripartite host-vector-virus network. We tested both approaches on mosquito-borne flaviviruses of mammals. Using host-virus models, we find that the inclusion of vector traits may improve inference in some cases, while viral traits proved to be the most important for model performance. Further, we found that it was possible, though quite difficult, to predict full tripartite (host-vector-virus) links. Both approaches are interesting avenues for further model development, but our results keenly underscore a need to collect more comprehensive datasets to characterize arbovirus ecology, across a wide and less biased geographic scope, especially outside of North America, and to better identify molecular traits that underpin host-vector-virus interactions.


PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001434
Author(s):  
Kevin J. Hart ◽  
B. Joanne Power ◽  
Kelly T. Rios ◽  
Aswathy Sebastian ◽  
Scott E. Lindner

Productive transmission of malaria parasites hinges upon the execution of key transcriptional and posttranscriptional regulatory events. While much is now known about how specific transcription factors activate or repress sexual commitment programs, far less is known about the production of a preferred mRNA homeostasis following commitment and through the host-to-vector transmission event. Here, we show that in Plasmodium parasites, the NOT1 scaffold protein of the CAF1/CCR4/Not complex is duplicated, and one paralogue is dedicated for essential transmission functions. Moreover, this NOT1-G paralogue is central to the sex-specific functions previously associated with its interacting partners, as deletion of not1-g in Plasmodium yoelii leads to a comparable or complete arrest phenotype for both male and female parasites. We show that, consistent with its role in other eukaryotes, PyNOT1-G localizes to cytosolic puncta throughout much of the Plasmodium life cycle. PyNOT1-G is essential to both the complete maturation of male gametes and to the continued development of the fertilized zygote originating from female parasites. Comparative transcriptomics of wild-type and pynot1-g− parasites shows that loss of PyNOT1-G leads to transcript dysregulation preceding and during gametocytogenesis and shows that PyNOT1-G acts to preserve mRNAs that are critical to sexual and early mosquito stage development. Finally, we demonstrate that the tristetraprolin (TTP)-binding domain, which acts as the typical organization platform for RNA decay (TTP) and RNA preservation (ELAV/HuR) factors is dispensable for PyNOT1-G’s essential blood stage functions but impacts host-to-vector transmission. Together, we conclude that a NOT1-G paralogue in Plasmodium fulfills the complex transmission requirements of both male and female parasites.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1244
Author(s):  
Angélica M. Nogueira ◽  
Monique B. Nascimento ◽  
Tarsiane M. C. Barbosa ◽  
Ayane F. F. Quadros ◽  
João Paulo A. Gomes ◽  
...  

Begomoviruses can be found in association with alphasatellites, which are capable of autonomous replication but are dependent on the helper begomovirus for systemic infection, encapsidation and vector transmission. Previous studies suggest that the presence of NW alphasatellites (genus Clecrusatellite) is associated with more severe symptoms. To better understand this interaction, we investigated the effects of two alphasatellites on infectivity, symptom development, viral DNA accumulation and vector transmission of three begomoviruses in three hosts. In tomato and Nicotiana benthamiana, all combinations were infectious. In Leonurus sibiricus, only the ToYSV/ToYSA combination was infectious. The presence of EuYMA increased symptom severity of EuYMV and ToYSV in N. benthamiana, and the presence of ToYSA was associated with more severe symptoms of ToYSV in N. benthamiana and L. sibiricus. EuYMA increased the accumulation of ToYSV in N. benthamiana but reduced the accumulation of EuYMV in tomato and of ToSRV in N. benthamiana. The presence of ToYSA decreased the accumulation of ToYSV in N. benthamiana and L. sibiricus. ToYSA negatively affected transmission of ToSRV by Bemisia tabaci MEAM1. Together, our results indicate that NW alphasatellites can interact with different begomoviruses, increasing symptom severity and interfering in the transmission of the helper begomovirus. Understanding this interaction is important as it may affect the emergence of diseases caused by begomovirus–alphasatellite complexes in the field.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tamyres Bernadete Dantas Queiroga ◽  
Luanderson Cardoso Pereira Gomez ◽  
Eduardo Rodrigues de Sena ◽  
Wilo Victor dos Santos ◽  
Henrique Rafael Pontes Ferreira ◽  
...  

Abstract Background Triatomines are responsible for the vector transmission of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Triatoma brasiliensis is the main vector of the parasite in Brazil, and dogs are an important reservoir of the parasite. The aim of this study was to evaluate the insecticidal effect of fluralaner (Bravecto®) on T. brasiliensis after a blood meal in treated dogs. Methods Healthy mongrel dogs (n = 8) were recruited from the Zoonoses Control Center (ZCC) in the city of Natal, Rio Grande do Norte, Brazil, and randomized into two groups, a fluralaner (Bravecto®)-treated group (n = 4) and a control group (n = 4). Colony-reared third-, fourth- and fifth-instar nymphs of T. brasiliensis nymphs (n = 10) were allowed to feed on dogs from both groups for 30–40 min, once monthly, for up to 12 months. Bug mortality was observed up to 5 days after each blood meal. Results Mortality in triatomines which had a blood meal on fluralaner (Bravecto®)-treated dogs was 100% for up to 7 months after treatment, with mortality decreasing to 66.4% after 8 months, 57% after 9 months, 35% after 10 months, 10% after 11 months and 0% after 12 months. The mortality of triatomines that fed on non-treated control dogs was always ≤ 2.5%. Conclusions Our results suggest that fluralaner (Bravecto®) treatment of dogs induces long-term mortality of T. brasiliensis after the blood meal. This is a potential approach to be used to control vector transmission of T. cruzi, the etiological agent of Chagas disease, especially in endemic areas. Graphical Abstract


2021 ◽  
Author(s):  
Kevin J. Hart ◽  
Bridget Joanne Power ◽  
Kelly T. Rios ◽  
Aswathy Sebastian ◽  
Scott E Lindner

Productive transmission of malaria parasites hinges upon the execution of key transcriptional and post-transcriptional regulatory events. While much is now known about how specific transcription factors activate or repress sexual commitment programs, far less is known about the production of a preferred mRNA homeostasis following commitment and through the host-to-vector transmission event. Here we show that Plasmodium parasites have taken the unique approach to duplicate the NOT1 scaffold protein of the CAF1/CCR4/Not complex in order to dedicate one paralogue for essential transmission functions. Moreover, this NOT1-G paralogue is central to the sex-specific functions previously associated with its interacting partners, as deletion of not1-g in Plasmodium yoelii leads to a comparable or complete arrest phenotype for both male and female parasites. We show that, consistent with its role in other eukaryotes, PyNOT1-G localizes to cytosolic puncta throughout much of the Plasmodium life cycle. PyNOT1-G is essential to both the complete maturation of male gametes and to the continued development of the fertilized zygote originating from female parasites. Comparative transcriptomics of wild-type and pynot1-g- parasites shows that loss of PyNOT1-G leads to transcript dysregulation preceding and during gametocytogenesis, and shows that PyNOT1-G acts to preserve mRNAs that are critical to sexual and early mosquito stage development. Finally, we demonstrate that the tristetraprolin-binding domain, which acts as the typical organization platform for RNA decay (TTP) and RNA preservation (ELAV/HuR) factors is dispensable for PyNOT1-Gs essential blood stage functions but impacts host-to-vector transmission. Together, we conclude that Plasmodium has created and adapted a NOT1-G paralogue to fulfill the complex transmission requirements of both male and female parasites.


Author(s):  
Salisu Muhammad Muhammad ◽  
Evren Hincal

Trachsummaroma is an eye infectious disease caused by Chlamydia Trachomatis bacterium, which may lead to irreversible blindness. The disease is spread directly or indirectly by contacting a contaminated material. It can also be transmitted through the disease vector known as “Musca sorbens” or “Bazaar fly”. To curtail the spread of the disease in a population, a meaningful information on the spread and possible control of the disease is required. Mathematical modeling provides efficient tools that can be used to understand and analyze the dynamics of the disease and its control. Several compartmental epidemic models have been proposed in the literature to study the dynamics of trachoma; including SI, SIR and SEIR. However, majority of the existing trachoma models consider only person to person transmission. Thus, the information provided by such models is insufficient since they did not capture the disease vector transmission. The current study proposed a novel SEIR-SEI model that consider both person-person and vector transmission dynamics. The threshold quantity, basic reproduction number R0 is obtained using the next generation matrix, and it was proved that the disease-free equilibrium is asymptotically stable when R0 < 1, and the endemic equilibrium is globally asymptotically stable when R0 > 1. Some simulation results with the aid of mesh plots for the reproductive number as a function of two different biological parameters were obtained. Furthermore, a comprehensive sensitivity analysis is conducted to identify the influence of the individual parameters on the R0. Numerical results show that the vector contact rate has the highest sensitivity with respect to R0, and the value of R0 increases with increase in, hence, the disease can be controlled by decreasing the vector contact rate. Similarly, improving the rate of environmental hygiene and facial cleanliness will decrease the size of R0 and result in the declination of the disease transmission. Moreover, a detailed parameter estimation of the model parameters and model fitting was presented with the use of field data cases from Northern Nigeria using least-square fitting method. The study provides alternative tools that can be used for planning trachoma control program to achieve global eradication of trachoma as a public heath challenge as targeted by WHO in 2030.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 842
Author(s):  
Richard Kormelink ◽  
Jeanmarie Verchot ◽  
Xiaorong Tao ◽  
Cecile Desbiez

Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.


2021 ◽  
Author(s):  
Carlina Colussi ◽  
Mariana Stafuza ◽  
Marcelo Nepote ◽  
Diego Mendicino

AbstractBackground & objectivesIn Latin America, Chagas disease is endemic, with high prevalence in rural indigenous communities and increasing prevalence in urban areas due to migration from rural areas with active vector transmission. The objective of the work was to assess differences in the prevalence of Chagas disease in urban and rural moqoit communities of the south of Gran Chaco, Santa Fe province, Argentina.MethodsA seroprevalence study was conducted in six moqoit populations. Belonging to an urban community was considered as an exposure variable, whereas seropositivity for Chagas disease was considered as an outcome variableResultsThe results showed that 9.26% of the 702 volunteers evaluated and 3.50% of women of childbearing potential were seropositive. The prevalence of Chagas disease in urban communities was 6.41 times higher than in rural communities.Interpretation & conclusionsThe seroprevalence found in the moqoit community is higher than that estimated for the general population of the same region, with greater impact in the urban area than in the rural area. The decline of vector transmission in the rural area could be related to the conservation of ancestral practices and the expansion of the agricultural model.


Sign in / Sign up

Export Citation Format

Share Document