Comparison of Nutrient Utilization Strategies of Traditional Shifting Agriculture Under Different Climatic and Soil Conditions in Zambia, Thailand, Indonesia, and Cameroon: Examples of Temporal Redistribution of Ecosystem Resources

Author(s):  
Shinya Funakawa
Author(s):  
Mihail Zver'kov

To the article the results of the theoretical and experimental researches are given on questions of estimates of the dynamic rate effect of raindrop impact on soil. The aim of this work was to analyze the current methods to determine the rate of artificial rain pressure on the soil for the assessment of splash erosion. There are the developed author’s method for calculation the pressure of artificial rain on the soil and the assessment of splash erosion. The study aims to the justification of evaluation methods and the obtaining of quantitative characteristics, prevention and elimination of accelerated (anthropogenic) erosion, the creation and the realization of the required erosion control measures. The paper considers the question of determining the pressure of artificial rain on the soil. At the moment of raindrops impact, there is the tension in the soil, which is called vertical effective pressure. It is noted that the impact of rain drops in the soil there are stresses called vertical effective pressure. The equation for calculation of vertical effective pressure is proposed in this study using the known spectrum of raindrops. Effective pressure was 1.4 Pa for the artificial rain by sprinkler machine «Fregat» and 5.9 Pa for long distance sprinkler DD-30. The article deals with a block diagram of the sequence for determining the effective pressure of rain drops on the soil. This diagram was created by the author’s method of calculation of the effective pressure of rain drops on the soil. The need for an integrated approach to the description of the artificial rain impact on the soil is noted. Various parameters characterizing drop erosion are considered. There are data about the mass of splashed soil in the irrigation of various irrigation machinery and installations. For example, the rate (mass) of splashed soil was 0.28…0.78 t/ha under irrigation sprinkler apparatus RACO 4260–55/701C in the conditions of the Ryazan region. The method allows examining the environmental impact of sprinkler techniques for analyzes of the pressure, caused by raindrops, on the soil. It can also be useful in determining the irrigation rate before the runoff for different types of sprinkler equipment and soil conditions.


2014 ◽  
Vol 63 (1) ◽  
pp. 79-88 ◽  
Author(s):  
László Pásztor ◽  
E. Dobos ◽  
G. Szatmári ◽  
A. Laborczi ◽  
K. Takács ◽  
...  

The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project is to significantly extend the potential, how demands on spatial soil related information could be satisfied in Hungary. Although a great amount of soil information is available due to former mappings and surveys, there are more and more frequently emerging discrepancies between the available and the expected data. The gaps are planned to be filled with optimized digital soil mapping (DSM) products heavily based on legacy soil data, which still represent a valuable treasure of soil information at the present time. The paper presents three approaches for the application of Hungarian legacy soil data in object oriented digital soil mapping.


1958 ◽  
Vol 17 (3) ◽  
pp. 684-692 ◽  
Author(s):  
L. E. Lloyd ◽  
D. G. Dale ◽  
E. W. Crampton
Keyword(s):  

2020 ◽  
Vol 7 (2) ◽  
pp. 10-16
Author(s):  
Alisher Shokirov ◽  
◽  
Nilufar Ibragimova

Planting schemes of “Sharqiya-2” and “Saratoni” varieties of white cabbage 70x30, 70x40 control, 70x50, 90x30, and 90x40 cm in the meadow-gray soil conditions of Uzbekistan were studied. A number of seedlings per hectare according to the planting scheme: 47.6; 35.7; 28.6; 37.0 and 27.8 thousand respectively


2019 ◽  
Author(s):  
João Macedo Moreira ◽  
Aldrin Martin Pérez-Marin ◽  
Jucilene Silva Araújo ◽  
George Rodrigues Lambais ◽  
Aldo Sales

The study aimed to evaluate the efficiency of nutrient use in three cactus forage (CF) cultivars (Opuntia stricta and Nopalea cochenillifera), 365 days after planting under different types of fertilizer in two research sites (Condado and Riachão) of the semi-arid region of Paraiba state, Brazil. The experimental design was a randomized block design with treatments in a factorial scheme (3×4), three cultivars of CF (Orelha de elefante Mexicana; Miúda; Bahiana), and four fertilizer treatment (Control; Manure; Manure with Nitrogen; Mineral fertilization) with four replications. The CF cultivars did not differ significantly in nutrient use. That means of physiological efficiency by CF cultivars were 1.62, and 2.36 kg of biomass per kg of nutrient applied in Condado and Riachão, respectively. The efficiency of nutrient recovery was 16% for the Condado, according the following order: K> P> Ca> N> C = Mg and 12% for Riachão: K> P> N> C = Ca = Mg. In the two research sites, the treatment with mineral fertilization significantly increased the efficiency use of N, P and K in comparison to the other treatments. The average for efficiency of nutrient utilization was 25% and 19% for Condado and Riachão, respectively, in the following order for Condado: K> P> N> Ca = Mg> C, and Riachão: K> P> N> C> Mg = Ca. In a CF production system aiming to obtain a yearly harvest cycle, it is necessary to replenish of K and P to maintain the nutritional balance between the soil and CF plant.


2017 ◽  
Vol 3 (4) ◽  
pp. 187 ◽  
Author(s):  
Arief Pambudi ◽  
Nita Noriko ◽  
Endah Permata Sari

<p><em>Abstrak -</em><strong> </strong><strong>Produksi padi di Indonesia setiap tahun mengalami peningkatan, namun peningkatan ini belum mampu memenuhi kebutuhan nasional sehingga impor masih harus dilakukan. Salah satu masalah dalam produksi beras adalah penggunaan pupuk berlebih yang tidak hanya meningkatkan biaya produksi, namun juga merusak kondisi tanah. Aplikasi bakteri tanah sebagai Plant <em>Growth Promoting Rhizobacteria</em> (PGPR) dapat menjadi salah satu solusi terhadap masalah ini. Penelitian ini bertujuan untuk mengisolasi bakteri tanah dari 3 lokasi sawah daerah Bekasi, membandingkan keberadaan total bakteri pada ketiga lokasi tersebut,  dan melakukan karakterisasi isolat berdasarkan karakter yang dapat memicu pertumbuhan tanaman. Dari ketiga lokasi, diperoleh total 59 isolat dan 5 diantaranya berpotensi sebagai PGPR karena kemampuan fiksasi Nitrogen, melarutkan Fosfat, katalase positif, dan motil. Dari ketiga lokasi pengambilan sampel, BK1 memiliki jumlah total bakteri terendah karena aplikasi pemupukan dan pestisida berlebih yang ditandai tingginya kadar P total, serta tingginya residu klorpirifos, karbofuran, dan paration. Kondisi fisik tanah BK1 juga didominasi partikel liat yang menyebabkan tanah menjadi lebih padat. Peningkatan jumlah penggunaan pupuk tidak selalu diikuti peningkatan produktivitas tanaman.</strong></p><p> </p><p><strong><em>Kata Kunci</em></strong><strong><em> </em></strong>- <em>Bakteri tanah, Rhizosfer sawah, PGPR, Pupuk Hayati</em></p><p><strong> </strong></p><p><em>Abstract</em><strong> - </strong><strong>Rice production in Indonesia has increased annually, but this increase has not reached national demand,so imports still done. </strong><strong>One of the problems in rice production is the use of excessive fertilizers that not only increase production costs, but also decreased the soil conditions. The application of soil bacteria as Plant Growth Promoting Rhizobacteria (PGPR) can be the one solution to face this problem. The objective of this study was isolate soil bacteria from 3 locations of rice field in Bekasi, compare the total bacteria in the three locations, and characterize isolates based on the character that can promote plant growth. From three locations, a total of 59 isolates were obtained and 5 of them were potential as a PGPRs due to its Nitrogen fixation activity, Phosphate solubilization, positive catalase, and motility. From three sampling sites, BK1 has the lowest TPC value because of excessive  fertilizers and pesticides application which indicated by high total P levels, and also high chlorpyrifos, carbofuran and paration residues. The physical condition of BK1 soil is also dominated by clay particles which causes the soil more solid. Increasing of fertilizer application is not always followed by increased plant productivity.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong> - <em>Biofertilizer, PGPR, Rice field rhizosphere, Soil Bacteria</em></p>


2018 ◽  
pp. 639-647 ◽  
Author(s):  
Christa Hoffmann

Harvest quality of sugar beet varies according to soil conditions, harvester type and setting, and variety, too. Harvest quality may affect storage losses, in particular when injuries occur. To determine the harvest quality of commercial sugar beet and to quantify resulting storage losses, 92 commercial sugar beet clamps were sampled across Germany and information about harvest conditions were gathered. At IfZ, soil tare, leaf residues, topping diameter, root tip breakage and surface damage of the beets were determined. The beets were stored in 6 replicates in a climate container at 9°C for 10 weeks. The results demonstrate a rather good harvesting quality of sugar beet in Germany. Soil moisture at harvest did not affect harvest quality and storage losses. Very light, but also heavier soils lead to inferior harvest quality (soil tare, root tip breakage, damage) and slightly higher storage losses compared to the typical loam soils. Significant differences occurred between the three harvester types (companies). In general, high root tip breakage and severe surface damage of the beet was related to a high infestation with mould and rots, high invert sugar contents after storage and high sugar losses. Out of the five most planted varieties, in particular one turned out to be very susceptible to damage, resulting in high storage losses. The factor analysis suggests that the effect of harvester / harvester setting and of variety is more important for harvest quality and storage losses of sugar beet than soil conditions at harvest. Therefore, attention should be paid to optimize these conditions.


Sign in / Sign up

Export Citation Format

Share Document