Artificial Life as Synthetic Biology

Cyberworlds ◽  
1998 ◽  
pp. 67-79 ◽  
Author(s):  
Paul Bourgine ◽  
Eric Bonabeau
2010 ◽  
Vol 16 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Mark A. Bedau ◽  
John S. McCaskill ◽  
Norman H. Packard ◽  
Steen Rasmussen

The concept of living technology—that is, technology that is based on the powerful core features of life—is explained and illustrated with examples from artificial life software, reconfigurable and evolvable hardware, autonomously self-reproducing robots, chemical protocells, and hybrid electronic-chemical systems. We define primary (secondary) living technology according as key material components and core systems are not (are) derived from living organisms. Primary living technology is currently emerging, distinctive, and potentially powerful, motivating this review. We trace living technology's connections with artificial life (soft, hard, and wet), synthetic biology (top-down and bottom-up), and the convergence of nano-, bio-, information, and cognitive (NBIC) technologies. We end with a brief look at the social and ethical questions generated by the prospect of living technology.


2012 ◽  
Vol 2 (2) ◽  
Author(s):  
Regina Frei ◽  
Giovanna Marzo Serugendo

AbstractComplexity Engineering encompasses a set of approaches to engineering systems which are typically composed of various interacting entities often exhibiting self-* behaviours and emergence. The engineer or designer uses methods that benefit from the findings of complexity science and often considerably differ from the classical engineering approach of “divide and conquer”.This article provides an overview on some very interdisciplinary and innovative research areas and projects in the field of Complexity Engineering, including synthetic biology, chemistry, artificial life, self-healing materials and others. It then classifies the presented work according to five types of nature-inspired technology, namely: (1) using technology to understand nature, (2) nature-inspiration for technology, (3) using technology on natural systems, (4) using biotechnology methods in software engineering, and (5) using technology to model nature. Finally, future trends in Complexity Engineering are indicated and related risks are discussed.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Hub Zwart

Synthetic cells spark intriguing questions about the nature of life. Projects such as BaSyC (Building a Synthetic Cell) aim to build an entity that mimics how living cells work. But what kind of entity would a synthetic cell really be? I assess this question from a philosophical perspective, and show how early fictional narratives of artificial life – such as the laboratory scene in Goethe’s Faust – can help us to understand the challenges faced by synthetic biology researchers.


2011 ◽  
pp. 217-224
Author(s):  
Mark A. Bedau ◽  
Carol E. Cleland

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 299 ◽  
Author(s):  
Supramaniam ◽  
Ces ◽  
Salehi-Reyhani

Synthetic biology is a rapidly growing multidisciplinary branch of science that exploits the advancement of molecular and cellular biology. Conventional modification of pre-existing cells is referred to as the top-down approach. Bottom-up synthetic biology is an emerging complementary branch that seeks to construct artificial cells from natural or synthetic components. One of the aims in bottom-up synthetic biology is to construct or mimic the complex pathways present in living cells. The recent, and rapidly growing, application of microfluidics in the field is driven by the central tenet of the bottom-up approach—the pursuit of controllably generating artificial cells with precisely defined parameters, in terms of molecular and geometrical composition. In this review we survey conventional methods of artificial cell synthesis and their limitations. We proceed to show how microfluidic approaches have been pivotal in overcoming these limitations and ushering in a new generation of complexity that may be imbued in artificial cells and the milieu of applications that result.


Sign in / Sign up

Export Citation Format

Share Document