The Finite Element Method of Viscoelastic Large Deformation Plane Problem with Kirchhoff Stress Tensors-Green Strain Tensors Constitutive Relation

1986 ◽  
pp. 87-91 ◽  
Author(s):  
Shen Ya-Peng ◽  
Chen Yi-heng
2019 ◽  
Vol 945 ◽  
pp. 857-865
Author(s):  
A.L. Grigorieva ◽  
Y.Y. Grigoriev ◽  
A.I. Khromov

In this paper, we obtained analytical solutions of the fields of strain tensors under uniaxial tension of a rigidplasticstrip underthe conditions of a plane stress state.The topicalityof the construction of these solutions is connected with significant difficulties in determining the strain fields by numerical methods (for example, the finite element method).In the construction of these solutions, the change in the geometric characteristics of the strip (thickness, width) was taken into account, which led to the solution of the nonlinear problem of the continuum mechanics.


Author(s):  
Aimin Yang ◽  
Jinze Li ◽  
Hengheng Qu ◽  
Yuhang Pan ◽  
Yanhong Kang ◽  
...  

In this paper, we first discuss the research status and application progress of the finite element method and the smoothed particle method. By analyzing the advantages of the smoothed particle method and the finite element method, a new coupling algorithm, namely FEM-SPH algorithm, is proposed. By the method of comparison, it shows that finite element method and SPH method in the simulation of large deformation problems each have advantages and disadvantages, the finite element method smoothed particle coupling algorithm is effective to achieve the performance of high computational efficiency and can naturally simulate large deformation problems across. In the process of calculation, the large deformation unit can be freely into an algorithm to facilitate the calculation accuracy and efficiency of three methods of numerical simulation. Through the study found, FEM-SPH algorithm not only overcome the defect of smooth particle tensile instability, but also overcomes the problem of low efficiency of finite element computation. To further test the FEM-SPH algorithm has advantages in the practical engineering, we have carried out the actual test to the example of the super high speed collision, concluded that, since the target of most of the computational domain is always finite element, smoothed particle focused only in contact with the projectile and target of local area, particle number is not much, the whole calculation process just ten minutes, computational efficiency has been greatly improved, at the same time in the simulation of large deformation, the advantage is very obvious .This provides a criterion for the actual project, depending on the specific material deformation mode and choose a more appropriate conversion algorithm.


1981 ◽  
Vol 13 (1-3) ◽  
pp. 19-27 ◽  
Author(s):  
Worsak Kanok-Nukulchai ◽  
Robert L. Taylor ◽  
Thomas J.R. Hughes

2010 ◽  
Vol 07 (03) ◽  
pp. 513-524 ◽  
Author(s):  
S. J. LIU ◽  
H. WANG ◽  
H. ZHANG

The smoothed finite element method (SFEM) was developed in order to eliminate certain shortcomings of the finite element method (FEM). SFEM enjoys some of the flexibilities of meshfree methods. One advantage of SFEM is its applicability to modeling large deformations. Due to the absence of volume integration and parametric mapping, issues such as negative volumes and singular Jacobi matrix do not occur. However, despite these advantages, SFEM has never been applied to problems with extreme large deformation. For the first time, we apply SFEM to extreme large deformations. For two numerical problems, we demonstrate the advantages of SFEM over FEM. We also show that SFEM can compete with the flexibility of meshfree methods.


2011 ◽  
Vol 261-263 ◽  
pp. 1109-1113
Author(s):  
Qun Lu ◽  
Jin Hui Zong ◽  
Jian Xin Zhang

The FEM mehods for simulating the penetration of jacked pile were summarized. Using the displacement penetration method, the complete uninterrupted penetrating process of jacked pile was simulated with the finite element method based on ANSYS. The soil’s displacement and stress field were obtained, and compared with the field test. The elastoplastic constitution law, large deformation, soil’s gravity field and pile-soil friction contact were taken into account. The difficulties and skills in the simulation were indicated, so it might be helpful to the other researchers.


Author(s):  
Radomir Timchenko ◽  
Dmytro Krishko ◽  
Iryna Khoruzhenko

The article describes a practice of using software system based on the finite element method for calculating shell foundations. It considers the peculiarities of the folded foundation interaction with subsoil mathematical modeling . It is found that during modeling, special attention should be paid to a purpose of the system initial parameters, to a choice of finite elements type, and to an optimal model of subsoil. Mathematical modeling of the folded foundation interaction with subsoil is performed under conditions of a plane problem. The foundation operation under various conditions of interaction with subsoil and with different stiffness parameters of the foundation is analyzed. Correlation between stiffness of a foundation structure and resulting equivalent stresses in subsoil under different conditions of interaction is determined. It is concluded that the obtained results represent a benchmark for subsequent calculations and modeling the interaction between a foundation and subsoil under a volumetric stressed condition.


Sign in / Sign up

Export Citation Format

Share Document