Development of Fish Robots Powered by Fuel Cells: Improvement of Swimming Ability by a Genetic Algorithm and Flow Analysis by Computational Fluid Dynamics

Author(s):  
Yogo Takada ◽  
Toshiaki Tamachi ◽  
Satoshi Taninaka ◽  
Toshinaga Ishii ◽  
Kazuaki Ebita ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meisam Babanezhad ◽  
Iman Behroyan ◽  
Ali Taghvaie Nakhjiri ◽  
Mashallah Rezakazemi ◽  
Azam Marjani ◽  
...  

AbstractComputational fluid dynamics (CFD) simulating is a useful methodology for reduction of experiments and their associated costs. Although the CFD could predict all hydro-thermal parameters of fluid flows, the connections between such parameters with each other are impossible using this approach. Machine learning by the artificial intelligence (AI) algorithm has already shown the ability to intelligently record engineering data. However, there are no studies available to deeply investigate the implicit connections between the variables resulted from the CFD. The present investigation tries to conduct cooperation between the mechanistic CFD and the artificial algorithm. The genetic algorithm is combined with the fuzzy interface system (GAFIS). Turbulent forced convection of Al2O3/water nanofluid in a heated tube is simulated for inlet temperatures (i.e., 305, 310, 315, and 320 K). GAFIS learns nodes coordinates of the fluid, the inlet temperatures, and turbulent kinetic energy (TKE) as inputs. The fluid temperature is learned as output. The number of inputs, population size, and the component are checked for the best intelligence. Finally, at the best intelligence, a formula is developed to make a relationship between the output (i.e. nanofluid temperatures) and inputs (the coordinates of the nodes of the nanofluid, inlet temperature, and TKE). The results revealed that the GAFIS intelligence reaches the highest level when the input number, the population size, and the exponent are 5, 30, and 3, respectively. Adding the turbulent kinetic energy as the fifth input, the regression value increases from 0.95 to 0.98. This means that by considering the turbulent kinetic energy the GAFIS reaches a higher level of intelligence by distinguishing the more difference between the learned data. The CFD and GAFIS predicted the same values of the nanofluid temperature.


Author(s):  
M. Himeno ◽  
S. Noda ◽  
R. Himeno ◽  
K. Fukasaku

We used the genetic algorithm (GA) and two-dimensional blood flow analysis to examine the fluid dynamic and engineering factors in multi-objective optimization of blood tubes (vessels). We supposed two factors from fluid dynamics: the wall shear stress (WSS) and the pressure loss, and one materials saving factor: the artery length. As a result, we could get the optimum shapes for each factor. In the case of WSS and artery length, both smoothly curved artery shapes and shapes with bulges were obtained as lower WSS cases. The shapes with bulges were similar to those of aneurysms. In this case, it was found that the WSS increases after the bulge is removed. This means bulges in artery vessel areas with higher WSSs effectively reduce the WSS value. Only the case of WSS and artery length produced a shape like an aneurysm. These results indicate that WSS and artery length are significant factors in determining artery shape.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Ya Ge ◽  
Feng Xin ◽  
Yao Pan ◽  
Zhichun Liu ◽  
Wei Liu

Recently, energy saving problem attracts increasing attention from researchers. This study aims to determine the optimal arrangement of a tube bundle to achieve the best overall performance. The multi-objective genetic algorithm (MOGA) is employed to determine the best configuration, where two objective functions, the average heat flux q and the pressure drop Δp, are selected to evaluate the performance and the consumption, respectively. Subsequently, a decision maker method, technique for order preference by similarity to an ideal solution (TOPSIS), is applied to determine the best compromise solution from noninferior solutions (Pareto solutions). In the optimization procedure, all the two-dimensional (2D) symmetric models are solved by the computational fluid dynamics (CFD) method. Results show that performances alter significantly as geometries of the tube bundle changes along the Pareto front. For the case 1 (using staggered arrangement as initial), the optimal q varies from 2708.27 W/m2 to 3641.25 W/m2 and the optimal Δp varies from 380.32 Pa to 1117.74 Pa, respectively. For the case 2 (using in-line arrangement as initial), the optimal q varies from 2047.56 W/m2 to 3217.22 W/m2 and the optimal Δp varies from 181.13 Pa to 674.21 Pa, respectively. Meanwhile, the comparison between the optimal solution with maximum q and the one selected by TOPSIS indicates that TOPSIS could reduce the pressure drop of the tube bundle without sacrificing too much heat transfer performance.


Sign in / Sign up

Export Citation Format

Share Document