Integrated AHP-TOPSIS Model for Software Selection Under Multi-criteria Perspective

Author(s):  
Santanu Kumar Misra ◽  
Amitava Ray
2013 ◽  
Vol 21 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Jack Burston
Keyword(s):  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 325
Author(s):  
Li Wang ◽  
Yong Zhou ◽  
Qing Li ◽  
Qian Zuo ◽  
Haoran Gao ◽  
...  

Forest land is the carrier for growing forests. It is of great significance to evaluate the forest land quality scientifically and delineate forestland protection zones reasonably for realizing better forest land management, promoting ecological civilization construction, and coping with global climate change. In this study, taking Hefeng County, Hubei Province, a subtropical humid evergreen broad-leaved forest region in China, as the study area, 14 indicators were selected from four dimensions—climatic conditions, terrain, soil conditions, and socioeconomics—to construct a forest land quality evaluation index system. Based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model, we introduced the Particle Swarm Optimization (PSO) algorithm to design the evaluation model to evaluate the forest land quality and analyze the distribution of forest land quality in Hefeng. Further, we used the Local Indicator of Spatial Association (LISA) to explore the spatial distribution of forest land quality and delineate the forest land protection zones. The results showed the following: (1) the overall quality of forest land was high, with some variability between regions. The range of Forest Land Quality Index (FLQI) in Hefeng was 0.4091–0.8601, with a mean value of 0.6337. The forest land quality grades were mainly first and second grade, with the higher-grade forest land mainly distributed in the central and southeastern low mountain regions of Zouma, Wuli, and Yanzi. The lower-grade forest land was mainly distributed in the northwestern middle and high mountain regions of Zhongying, Taiping, and Rongmei. (2) The global spatial autocorrelation index of forest land quality in Hefeng County was 0.7562, indicating that the forest land quality in the county had a strong spatial similarity. The spatial distribution of similarity types high-high (HH) and low-low (LL) was more clustered, while the spatial distribution of dissimilarity types high-low (HL) and low-high (LH) was generally dispersed. (3) Based on the LISA of forest land quality, forest land protection zones were divided into three types: key protection zones (KPZs), active protection zones (APZs), and general protection zones (GPZs). The forest land protection zoning basically coincided with the forest land quality. Combining the characteristics of self-correlated types in different forestland protection zones, corresponding management and protection measures were proposed. This showed that the PSO-TOPSIS model can be effectively used for forest land quality evaluation. At the same time, the spatial attributes of forest land were incorporated into the development of forest land protection zoning scheme, which expands the method of forest land protection zoning, and can provide a scientific basis and methodological reference for the reasonable formulation of forest land use planning in Hefeng County, while also serving as a reference for similar regions and countries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adrian Zapletal ◽  
Dimitri Höhler ◽  
Carsten Sinz ◽  
Alexandros Stamatakis

AbstractScientific software from all areas of scientific research is pivotal to obtaining novel insights. Yet the coding standards adherence of scientific software is rarely assessed, even though it might lead to incorrect scientific results in the worst case. Therefore, we have developed an open source tool and benchmark called , that provides a relative software coding standards adherence ranking of 48 computational tools from diverse research areas. can be used in the review process of software papers and to inform the scientific software selection process.


2015 ◽  
Vol 77 (5) ◽  
Author(s):  
Ahmad Taufik Nursal ◽  
Mohd Faizal Omar ◽  
Mohd Nasrun Mohd Nawi

The emerging of new Information Communication Technology (ICT) technology namely Building Information Modeling been proven benefits toward construction industry. As a result, the list of BIM software available in the market is keep increasing in recent years. This has led to the selection problem among construction companies. Moreover, the selection BIM software also required high investment in term of software, hard ware and training expenses. These aforementioned issues have increased the complexities of decision process and the need of decision aid in BIM software selection. Thus, this paper has introduced a new approach in MCDMDSS web development by utilization of Web 2.0 application. The rapid development of Information technology has highly benefit to the development of web based DSS. The design and validation architecture of a web base DSS called topsis4BIM for Building Information Modeling (BIM) is presented. 


Sign in / Sign up

Export Citation Format

Share Document