Inverse Reliability Analysis for Possibility Distribution of Design Variables

Author(s):  
A. S. Balu ◽  
B. N. Rao
Author(s):  
Sang-Joon Yoon ◽  
Dong-Hoon Choi

The focus in this paper is to automatically design the air-bearing surface (ABS) considering the randomness of its geometry as an uncertainty of design variables. Designs determined by the conventional optimization could only provide a low level of confidence in practical products due to the existence of uncertainties in either engineering simulations or manufacturing processes. This calls for a reliability-based approach to the design optimization, which increases product or process quality by addressing randomness or stochastic properties of design problems. In this study, a probabilistic design problem is formulated considering the reliability analysis which is employed to estimate how the fabrication tolerances of individual slider parameters affect the final flying attitude tolerances. The proposed approach first solves the deterministic optimization problem. Beginning with this solution, the reliability-based design optimization (RBDO) is continued with the probabilistic constraints affected by the random variables. Probabilistic constraints overriding the constraints of the deterministic optimization attempt to drive the design to a reliability solution with minimum increase in the objective. The simulation results of the probabilistic design are directly compared with the values of the initial design and the results of the deterministic optimum design, respectively. In order to show the effectiveness of the proposed approach, the reliability analyses by the Monte Carlo simulation are carried out. And the results demonstrate how efficient the proposed approach is, considering the enormous computation time of the reliability analysis.


2007 ◽  
Vol 348-349 ◽  
pp. 225-228
Author(s):  
Jun Shen ◽  
M.L. Zhang ◽  
D.Y. Hou

A new approach for progressive failure and reliability analysis of carbon fiber reinforced polymeric (CFRP) composite pressure vessel with many base random variables is developed in the paper. The elastic constants of CFRP lamina and geometric parameters of the vessel are selected as the base design variables. CFRP lamina specimen and pressure vessel were manufactured and tested in order to obtain statistics of design variables. The limit state function for progressive failure analysis was set up. Then the progressive failure and reliability analysis of the vessel were performed according to the stiffness degradation model based on Monte Carlo simulation procedure using MATLAB. The distributions of failure loads and the probability of failure of the vessel were obtained. The feasibility and accuracy of the proposed method is validated by good agreement between the simulation and experimental results. Further analysis indicates that the lamina tensile strength in the fiber direction and hoop layer thickness of the vessel have significant influence on the probability of failure of composite pressure vessel.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012010
Author(s):  
Jingdong Zhang ◽  
Bin Zheng ◽  
Zhigang Li ◽  
Zhuo Yang

Abstract In order to research the static and dynamic characteristics of drum brake in the braking process and avoid resonance, it is necessary to carry out static analysis and modal analysis of drum brake. By establishing the three-dimensional model of the brake drum and imported to ANSYS for static analysis, the maximum equivalent stress and maximum deformation of the brake drum are obtained. The first, second and third natural frequencies and modal vibration shapes of the brake drum are obtained by modal analysis. Four dimensional parameters are selected as design variables, and the sensitivity is carried out by using experimental design. Taking the maximum deformation, first natural frequency, second natural frequency and mass of the brake drum as the objective function, the multi-objective optimization algorithm is used to optimize the design variables. Based on the optimization design, the six sigma reliability analysis of the brake drum is carried out, and the six sigma reliability analysis method is given in detail. The cumulative distribution graph of the maximum deformation, first natural frequency, second natural frequency and mass of the brake drum are obtained. The analysis results show that the reliability of the brake drum is close to 100%, and then it is judged that the brake drum has high reliability. The research results provide a reference basis for structural reliability analysis.


2021 ◽  
Author(s):  
Paria Sarshar

The current intersection sight distance values on a roundabout provided by ASSHTO and other worldwide guidelines are based on deterministic methods considering only single variables as the design inputs. However, most of the input design variables such as entering speed and the deceleration rate are random variables which are stochastic in nature. Therefore, this study proposes a reliability analysis approach to add uncertainty to the current deterministic models. Two different reliability approaches; the first order second moment and advanced first order second moment are presented in this paper. These approaches rely on the normal distribution of the random variables using the mean, variance and the covariance of the probability distribution of each variable rather than the single deterministic values. Results show that the AFOSM reliability methodology provides a more conservative outcome which ensures a greater safety margin comparing to FOSM which appears to be a more efficient and robust methodology.


Author(s):  
Bo Yang ◽  
Changzheng Cheng ◽  
Xuan Wang ◽  
Zeng Meng ◽  
Abbas Homayouni-Amlashi

Currently, most of the piezoelectric structures are designed under deterministic conditions, where the influence of uncertain factors on the output motion accuracy is ignored. In this work, a probabilistic reliability-based topology optimization method for piezoelectric structure is proposed to deal with the working voltage uncertainty. A nested double-loop optimization algorithm of minimizing the total volume while satisfying the reliability requirement of the displacement performance is established, where the PEMAP-P (piezoelectric material with penalization and polarization) model is used for parameterization of stiffness matrix, piezoelectric coupling matrix, and polarization direction. This strategy consists of an inner loop for reliability analysis and an outer loop for topology optimization. The reliability index approach based on most probable point (MPP) is used for realizing the evaluation of reliability constraint in reliability analysis. The sensitivities of reliability constraint with respect to the random variables and design variables are detailed using the adjoint variable method. Typical examples are performed to illustrate the effectiveness of the proposed RBTO method. A comparison of the optimization results for different reliability indexes, standard deviations of the voltage, spring stiffnesses, and displacement limits are conducted, as well as the deterministic topology optimization results.


2012 ◽  
Vol 605-607 ◽  
pp. 811-814 ◽  
Author(s):  
Tian Min Guan ◽  
Jiang Bo Li ◽  
Lei Lei

All sorts of design variables and parameters are often regarded as fixed values in the traditional design, it cannot describe quantitatively how well the products are safe. It is necessary to make a reliability analysis of cycloidal gear, which is the key part of FA pin-cycloidal transmission, this paper uses Monte-Carlo method to simulate and test the distribution laws of the contact stress and the contact fatigue strength of cycloidal gear, which indicates that the contact stress obeys the normal distribution and the contact fatigue strength obeys the lognormal distribution, besides, makes a sensitivity analysis of the random parameters, all these work lay the foundation for the reliability analysis of the whole reducer.


Sign in / Sign up

Export Citation Format

Share Document