scholarly journals Reliability Analysis and Optimization for the Brake Drum

2022 ◽  
Vol 2160 (1) ◽  
pp. 012010
Author(s):  
Jingdong Zhang ◽  
Bin Zheng ◽  
Zhigang Li ◽  
Zhuo Yang

Abstract In order to research the static and dynamic characteristics of drum brake in the braking process and avoid resonance, it is necessary to carry out static analysis and modal analysis of drum brake. By establishing the three-dimensional model of the brake drum and imported to ANSYS for static analysis, the maximum equivalent stress and maximum deformation of the brake drum are obtained. The first, second and third natural frequencies and modal vibration shapes of the brake drum are obtained by modal analysis. Four dimensional parameters are selected as design variables, and the sensitivity is carried out by using experimental design. Taking the maximum deformation, first natural frequency, second natural frequency and mass of the brake drum as the objective function, the multi-objective optimization algorithm is used to optimize the design variables. Based on the optimization design, the six sigma reliability analysis of the brake drum is carried out, and the six sigma reliability analysis method is given in detail. The cumulative distribution graph of the maximum deformation, first natural frequency, second natural frequency and mass of the brake drum are obtained. The analysis results show that the reliability of the brake drum is close to 100%, and then it is judged that the brake drum has high reliability. The research results provide a reference basis for structural reliability analysis.

2014 ◽  
Vol 638-640 ◽  
pp. 153-158
Author(s):  
Hui Rong Huang ◽  
Jie Li

Based on the APDL parametric design language, the models of the first to the tenth-order for the vibration isolator of the laminated curved plate were analyzed. The natural frequencies and maximum deformation for resonance of all modes were obtained .Then the curves of the influences on the natural frequency which was influenced by the thickness of the curved plate were concluded. The result shows that the thicker curves plate is, the smaller the value of the natural frequency is.


2014 ◽  
Vol 889-890 ◽  
pp. 140-143
Author(s):  
Tie Ling Wang ◽  
Zhao Xia Xi

Aanalyzed the finite element static characteristics of the slender shaft deformation under the influence of cutting forces with different clamping ways in turning process by Pro/ENGINEER and Pro/MECHANICA software . Also analyzed the influence of clamping ways on the natural frequency of the slender shaft modal characteristics. The result indicates that the static analysis can be applied to the prediction of processing deformation with different clamping ways, the modal analysis can be applied to the calculation of the slender shaft natural frequency with different clamping ways. Can get a basic for reducing machining deformation and vibration, selecting cutting parameters, drawing up technological scheme reasonably.


2011 ◽  
Vol 347-353 ◽  
pp. 1276-1280
Author(s):  
Hong Liang Hu ◽  
Rui Jie Wang ◽  
Chun Ling Meng ◽  
Guo Feng Li

Abstract. Combining characteristic of the Wind Tturbines's rotary support, using finite element method, the paper probe the rotary support finite element analysis of static and modal analysis. Through the static analysis of the rotary support, receiving the deformation and stress-strain results; through modal analysis,receiving the 6-order natural frequency and vibration shape.Analyzing of the main failure forms and Dynamic performance ,the results provide a theoretical basis of improvement of the design and to finalize the program.


Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


2014 ◽  
Vol 548-549 ◽  
pp. 383-388
Author(s):  
Zhi Wei Chen ◽  
Zhe Cui ◽  
Yi Jin Fu ◽  
Wen Ping Cui ◽  
Li Juan Dong ◽  
...  

Parametric finite element model for a commonly used telescopic boom structure of a certain type of truck-mounted crane has been established. Static analysis of the conventional design configuration was performed first. And then an optimization process has been carried out to minimize the total weight of the telescopic structures. The design variables include the geometric shape parameters of the cross-sections and the integrated structural parameters of the telescopic boom. The constraints include the maximum allowable equivalent stresses and the flexure displacements at the tip of the assembled boom structure in both the vertical direction and the circumferential direction of the rotating plane. Compared with the conventional design, the optimization design has achieved a significant weight reduction of up to 24.3%.


2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


Author(s):  
José Alfredo Ramírez Monares ◽  
Jesús Israel Hernández Hernández

The static analysis of the indeterminate three-bar structure is developed using the Castigliano's first theorem, taking the lengths and inclination angles as variables. Some reductions are applied in the resulting set of equations to approximate them to the references models. From now on, the minimum mass optimization model with restrictions is established. Then, the Optimality Criterion linear resizing optimization rule algorithm for the unbounded and bounded design variables is applied in two numerical cases. The analytical and Matlab Optimization Toolbox results are also obtained and they demonstrate the Optimality Criterion linear resizing rule effectiveness in structural optimization with a minimum mass objective and size restrictions.


This article presents a critical review of recent research done on crack identification and localization in structural beams using numerical and experimental modal analysis. Crack identification and localization in beams are very crucial in various engineering applications such as ship propeller shafts, aircraft wings, gantry cranes, and Turbo machinery blades. It is necessary to identify the damage in time; otherwise, there may be serious consequences like a catastrophic failure of the engineering structures. Experimental modal analysis is used to study the vibration characteristics of structures like natural frequency, damping and mode shapes. The modal parameters like natural frequency and mode shapes of undamaged and damaged beams are different. Based on this reason, structural damage can be detected, especially in beams. From the review of various research papers, it is identified that a lot of the research done on beams with open transverse crack. Crack location is identified by tracking variation in natural frequencies of a healthy and cracked beam


2012 ◽  
Vol 239-240 ◽  
pp. 473-477 ◽  
Author(s):  
Guo Jian Huang ◽  
Cheng Zhong He ◽  
Xin Hua Wang

Old giant cranes in corrosive environment are in serious hidden danger of structural instability and failure, the modal analysis is an important part of dynamics analysis in the Crane Safety Evaluation to guarantee the safety of cranes. A Modal Analysis of a 28-year old 100t giant shipbuilding tower crane was done using ANSYS. Comparing with the vibration frequencies and modal shapes, Modal analysis shows that the Natural Frequency of the crane reduces from 1.0024Hz to 1.0003Hz, beside all the Modal vibration frequencies (first 10 Order) of the crane are lower than the designed value, means the strength of the tower crane has decreased; the Modal Vibration Frequencies (first 10 Order) of the tower crane are between 1 Hz and 2 Hz. The Mmodal analysis provided theoretical basis for safe use, design and transformation of this crane.


Sign in / Sign up

Export Citation Format

Share Document