The Potential for District Heating Based on Renewable Energy: A Spatial Analysis

Author(s):  
Christoph Schillings ◽  
Sonja Simon
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


2021 ◽  
pp. 2141004
Author(s):  
Lingling Zhu ◽  
Jie Fangi Shi ◽  
Yi Hai Shi ◽  
Hai Peng Xu ◽  
A. Shanthini ◽  
...  

Energy is now seen as a significant resource that develops abundant on the world economy, with short supply and development. A study found that renewable energy systems are needed to prevent shortages. Hence, all the focus in this study to decrease electricity consumption and reduce the overall completion times for a regular console in green technology networks was an efficient and scalable production genomic solution. A Renewable green energy resources smart city (RGER-SC) framework is proposed that used a multi-target evolutionary algorithm was hybridized to be effective and calculated arithmetically in this study. This work deals with fostering renewable energy incorporation by adjusting federal charges to increase the energy accounting practitioners. Besides, this report analyses the timely generation of delay-tolerant demands and the maintenance of district heating at network infrastructure. In comparison, capacity differentials between consumers and information centres are considered and evaluated using the Renewable green energy resources smart city (RGER-SC) framework for energy conservation and controlled task management at an industrial level.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3310 ◽  
Author(s):  
Ignacio Blanco ◽  
Daniela Guericke ◽  
Anders Andersen ◽  
Henrik Madsen

In countries with an extended use of district heating (DH), the integrated operation of DH and power systems can increase the flexibility of the power system, achieving a higher integration of renewable energy sources (RES). DH operators can not only provide flexibility to the power system by acting on the electricity market, but also profit from the situation to lower the overall system cost. However, the operational planning and bidding includes several uncertain components at the time of planning: electricity prices as well as heat and power production from RES. In this publication, we propose a planning method based on stochastic programming that supports DH operators by scheduling the production and creating bids for the day-ahead and balancing electricity markets. We apply our solution approach to a real case study in Denmark and perform an extensive analysis of the production and trading behavior of the DH system. The analysis provides insights on system costs, how DH system can provide regulating power, and the impact of RES on the planning.


2017 ◽  
Vol 35 (7) ◽  
pp. 1218-1241 ◽  
Author(s):  
Frede Hvelplund ◽  
Søren Djørup

Transition from the stored energy of fossil fuel-based systems to fluctuating renewable energy sources requires a fundamental change in both the energy supply system and governance arrangements. According to analyses made using the Aalborg University Energy PLAN model, the infrastructure required to handle fluctuating energy – such as goals for further expanding the exploitation of wind power towards 50% of energy consumption – necessitates the integration of power, district heating, transportation and biomass production, which should be geographically distributed. To enhance our understanding of this paradigmatic technological change, this article presents both a general analysis of the regulatory consequences and a specific analysis of the immediate challenges involved in the transition process, framed within the Danish context. The general conclusion is that the required distributed, local and regional technological energy system needs a bottom up and interactive regulatory framework, where the central government should have a more reflexive and communicative role, providing services and national coordination for an energy system that contains a large share of fluctuating renewable energy sources. A specific conclusion is that the present Danish tariff principles and energy tax system should be fundamentally altered in order to better facilitate the coordination of the heat and electricity sectors, to incentivise the creation of the necessary integration infrastructure.


2017 ◽  
Vol 75 ◽  
pp. 809-819 ◽  
Author(s):  
Christopher Barrington-Leigh ◽  
Mark Ouliaris

2009 ◽  
Vol 34 (12) ◽  
pp. 1109-1120 ◽  
Author(s):  
S. Ghafghazi ◽  
T. Sowlati ◽  
S. Sokhansanj ◽  
S. Melin

Sign in / Sign up

Export Citation Format

Share Document