Human Trophoblast in Trisomy 21: A Model for Cell–Cell Fusion Dynamic Investigation

Author(s):  
André Malassiné ◽  
Guillaume Pidoux ◽  
Pascale Gerbaud ◽  
Jean Louis Frendo ◽  
Danièle Evain-Brion
2010 ◽  
Vol 298 (6) ◽  
pp. C1517-C1526 ◽  
Author(s):  
Guillaume Pidoux ◽  
Pascale Gerbaud ◽  
Sédami Gnidehou ◽  
Michael Grynberg ◽  
Graziello Geneau ◽  
...  

Trophoblastic cell-cell fusion is an essential event required during human placental development. Several membrane proteins have been described to be directly involved in this process, including connexin 43 (Cx43), syncytin 1 (Herv-W env), and syncytin 2 (Herv-FRD env glycoprotein). Recently, zona occludens (ZO) proteins (peripheral membrane proteins associated with tight junctions, adherens junctions, and gap junctions) were shown to be involved in mouse placental development. Moreover, zona occludens 1 (ZO-1) was localized mainly at the intercellular boundaries between human trophoblastic cells. Therefore the role of ZO-1 in the dynamic process of human trophoblastic cell-cell fusion was investigated using primary trophoblastic cells in culture. In vitro as in situ, ZO-1 was localized mainly at the intercellular boundaries between trophoblastic cells where its expression substantially decreased during differentiation and during fusion. At the same time, Cx43 was localized at the interface of trophoblastic cells and its expression increased during differentiation. To determine a functional role for ZO-1 during trophoblast differentiation, small interfering RNA (siRNA) was used to knock down ZO-1 expression. Cytotrophoblasts treated with ZO-1 siRNA fused poorly, but interestingly, decreased Cx43 expression without altering the functionality of trophoblastic cell-cell communication as measured by relative permeability time constant determined using gap-FRAP experiments. Because kinetics of Cx43 and ZO-1 proteins show a mirror image, a potential association of these two proteins was investigated. By using coimmunoprecipitation experiments, a physical interaction between ZO-1 and Cx43 was demonstrated. These results demonstrate that a decrease in ZO-1 expression reduces human trophoblast cell-cell fusion and differentiation.


PLoS ONE ◽  
2009 ◽  
Vol 4 (7) ◽  
pp. e6130 ◽  
Author(s):  
Yoshiyuki Yamada ◽  
Xiao Bo Liu ◽  
Shou Guo Fang ◽  
Felicia P. L. Tay ◽  
Ding Xiang Liu

2014 ◽  
Vol 206 (5) ◽  
pp. 576-577
Author(s):  
Caitlin Sedwick
Keyword(s):  

Chen studies cell–cell fusion in Drosophila myoblasts.


2008 ◽  
Vol 4 (3) ◽  
pp. e1000016 ◽  
Author(s):  
Jayme Salsman ◽  
Deniz Top ◽  
Christopher Barry ◽  
Roy Duncan
Keyword(s):  

Methods ◽  
1998 ◽  
Vol 16 (2) ◽  
pp. 215-226 ◽  
Author(s):  
Fredric S. Cohen ◽  
Grigory B. Melikyan
Keyword(s):  

2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Xiao-Chun Peng ◽  
Min Zhang ◽  
Ying-Ying Meng ◽  
Yan-Fang Liang ◽  
Ying-Ying Wang ◽  
...  

2021 ◽  
Author(s):  
Qing Fan ◽  
Richard Longnecker ◽  
Sarah A. Connolly

The viral fusion protein glycoprotein B (gB) is conserved in all herpesviruses and is essential for virus entry. During entry, gB fuses viral and host cell membranes by refolding from a prefusion to a postfusion form. We previously introduced three structure-based mutations (gB-I671A/H681A/F683A) into the domain V arm of the gB ectodomain that resulted in reduced cell-cell fusion. A virus carrying these three mutations (called gB3A) displayed a small plaque phenotype and remarkably delayed entry into cells. To identify mutations that could counteract this phenotype, we serially passaged the gB3A virus and selected for revertant viruses with increased plaque size. Genomic sequencing revealed that the revertant viruses had second-site mutations in gB, including E187A, M742T, and S383F/G645R/V705I/V880G. Using expression constructs encoding these mutations, only gB-V880G was shown to enhance cell-cell fusion. In contrast, all of the revertant viruses showed enhanced entry kinetics, underscoring the fact that cell-cell fusion and virus-cell fusion are different. The results indicate that mutations in three different regions of gB (domain I, the membrane proximal region, and the cytoplasmic tail domain) can counteract the slow entry phenotype of gB3A virus. Mapping these compensatory mutations to prefusion and postfusion structural models suggests sites of intramolecular functional interactions with the gB domain V arm that may contribute to the gB fusion function. Importance The nine human herpesviruses are ubiquitous and cause a range of disease in humans. Glycoprotein B (gB) is an essential viral fusion protein that is conserved in all herpesviruses. During host cell entry, gB mediates virus-cell membrane fusion by undergoing a conformational change. Structural models for the prefusion and postfusion form of gB exist, but the details of how the protein converts from one to the other are unclear. We previously introduced structure-based mutations into gB that inhibited virus entry and fusion. By passaging this entry-deficient virus over time, we selected second-site mutations that partially restore virus entry. The location of these mutations suggest regulatory sites that contribute to fusion and gB refolding during entry. gB is a target of neutralizing antibodies and defining how gB refolds during entry could provide a basis for the development of fusion inhibitors for future research or clinical use.


1977 ◽  
Vol 28 (1) ◽  
pp. 179-188
Author(s):  
S. Knutton ◽  
D. Jackson ◽  
M. Ford

Fusion of erythrocytes and HeLa cells with Sendai and Newcastle disease viruses has been studied by scanning electron microscopy. Most virus particles are spherical but vary in diameter from approximately 200 to approximately 600 nm. At 4 degrees C virus particles bind randomly to the cell surface and at high cell densities cross-linking of adjacent cells by virus particles results in cell agglutination. Cell-cell fusion takes place when the agglutinated cell suspension is warmed to 37 degrees C. Fusion is initiated at sites of cell-cell contact and is accompanied in all cases by cell swelling. In the case of suspension HeLa cells, virally mediated cell swelling involves an ‘unfolding’ of cell surface microvilli and results in the formation of smooth-surfaced single or fused cells. With erythrocytes, swelling results in haemolysis. There is a dramatic reduction in the numbers of virus particles bound to cells following fusion.


2016 ◽  
Vol 6 ◽  
Author(s):  
Mai Izumida ◽  
Haruka Kamiyama ◽  
Takashi Suematsu ◽  
Eri Honda ◽  
Yosuke Koizumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document