Rat Embryonic Cortical Neural Stem Cells: Role of Hypoxia on Cell Proliferation and Differentiation

Author(s):  
Yong Liu ◽  
Haixia Lu ◽  
Xinlin Chen
PPAR Research ◽  
2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
A. Cimini ◽  
L. Cristiano ◽  
E. Benedetti ◽  
B. D'Angelo ◽  
M. P. Cerù

PPAR isotypes are involved in the regulation of cell proliferation, death, and differentiation, with different roles and mechanisms depending on the specific isotype and ligand and on the differentiated, undifferentiated, or transformed status of the cell. Differentiation stimuli are integrated by key transcription factors which regulate specific sets of specialized genes to allow proliferative cells to exit the cell cycle and acquire specialized functions. The main differentiation programs known to be controlled by PPARs both during development and in the adult are placental differentiation, adipogenesis, osteoblast differentiation, skin differentiation, and gut differentiation. PPARs may also be involved in the differentiation of macrophages, brain, and breast. However, their functions in this cell type and organs still awaits further elucidation. PPARs may be involved in cell proliferation and differentiation processes of neural stem cells (NSC). To this aim, in this work the expression of the three PPAR isotypes and RXRs in NSC has been investigated.


2012 ◽  
Vol 274 (1-2) ◽  
pp. 46-53 ◽  
Author(s):  
Nan Che ◽  
Xia Li ◽  
Shiliang Zhou ◽  
Rui Liu ◽  
Dongyan Shi ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 45431-45438 ◽  
Author(s):  
Tiago H. Ferreira ◽  
Antonella Rocca ◽  
Attilio Marino ◽  
Virgilio Mattoli ◽  
Edesia M. B. de Sousa ◽  
...  

The biocompatibility of boron nitride nanotubes with rat mesenchymal stem cells has been evaluated in terms of cell proliferation and differentiation.


2020 ◽  
Author(s):  
Flaria El-Khoury ◽  
Jérôme Bignon ◽  
Jean-René Martin

AbstractSmall nucleolar RNAs (snoRNAs) are non-coding RNAs conserved from archeobacteria to mammals. In humans, various snoRNAs have been associated with pathologies as well as with cancer. Recently in Drosophila, a new snoRNA named jouvence has been involved in lifespan. Since snoRNAs are well conserved through evolution, both structurally and functionally, jouvence orthologue has been identified in human, allowing hypothesizing that jouvence could display a similar function (increasing healthy lifespan) in human. Here, we report the characterization of the human snoRNA-jouvence, which was not yet annotated in the genome. We show, both in stably cancerous cell lines and in primary cells, that its overexpression stimulates the cell proliferation. In contrast, its knockdown, by siRNA leads to an opposite phenotype, a decrease in cell proliferation. Transcriptomic analysis reveals that overexpression of jouvence leads to a dedifferentiation signature of the cells, a cellular effect comparable to rejuvenation. Inversely, the knockdown of jouvence leads to a decrease of genes involved in ribosomes biogenesis and spliceosome in agreement with the canonical role of a H/ACA box snoRNA. In this context, jouvence could represent a now tool to fight against the deleterious effect of aging, as well as a new target in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document