Umbilical cord mesenchymal stem cells suppress B-cell proliferation and differentiation

2012 ◽  
Vol 274 (1-2) ◽  
pp. 46-53 ◽  
Author(s):  
Nan Che ◽  
Xia Li ◽  
Shiliang Zhou ◽  
Rui Liu ◽  
Dongyan Shi ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 45431-45438 ◽  
Author(s):  
Tiago H. Ferreira ◽  
Antonella Rocca ◽  
Attilio Marino ◽  
Virgilio Mattoli ◽  
Edesia M. B. de Sousa ◽  
...  

The biocompatibility of boron nitride nanotubes with rat mesenchymal stem cells has been evaluated in terms of cell proliferation and differentiation.


2010 ◽  
Vol 107 (7) ◽  
pp. 913-922 ◽  
Author(s):  
Konstantinos E. Hatzistergos ◽  
Henry Quevedo ◽  
Behzad N. Oskouei ◽  
Qinghua Hu ◽  
Gary S. Feigenbaum ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4061-4061
Author(s):  
Rong Tao ◽  
Chu-Pak Lau ◽  
Hon-Cheung Lee ◽  
Gui-Rong Li

Abstract Human mesenchymal stem cells (hMSCs) play an important role in the regulation of hematopoietic microenvironment. Cyclic ADP-ribose (cADPR), a universal Ca2+ mobilizer produced by hMSCs in the bone marrow, has been demonstrated to be an important factor in the regulation of hematopoietic stem cells proliferation. However, its biological effects on hMSCs are not understood. The present study was designed to investigate the effects of cADPR on Ca2+ signaling, cell proliferation and differentiation in hMSCs. Ca2+ activity in hMSCs was measured with a confocal microscope. It was found that cADPR increased the frequency of spontaneous Ca2+ oscillatory transient, and the effect was abolished by pretreatment with the specific cADPR antagonist 8-Br-cADPR, but not by ryanodine, though the ryanodine receptors are the classic targets of cADPR in other types of cells. RT-PCR showed no gene expression for ryanodine receptors in hMSCs. Interestingly, the cADPR-induced increase of spontaneous Ca2+ oscillation was abolished by the TRPM2 channel inhibitors econazole and clotrimazole. The downregulation of TRPM2 channels with siRNA technique had no significant effects on spontaneous Ca2+ oscillation; however, it abrogated the cADPR-induced increase of spontaneous Ca2+ oscillation. The effects of cADPR on cell proliferation and differentiation were then investigated in hMSCs. We found that cADPR increased hMSCs proliferation, but had no significant effects on osteogeneic and adipogeneic differentiation. Importantly, the effect of cADPR on hMSCs proliferation was antagonized by 8-Br-cADPR or by the selectively knockdown of TRPM2 channels. In conclusion, our results demonstrate the novel information that cADPR regulate cell proliferation by increasing spontaneous Ca2+ oscillation mediated by TRPM2 channels, but has no effects on osteogeneic and adipogeneic differentiation in hMSCs.


Author(s):  
Sushmitha Sriramulu ◽  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Surajit Pathak

AbstractObjectivesWound healing is a complex process with a sequence of restoring and inhibition events such as cell proliferation, differentiation, migration as well as adhesion. Mesenchymal stem cells (MSC) derived conditioned medium (CM) has potent therapeutic functions and promotes cell proliferation, anti-oxidant, immunosuppressive, and anti-apoptotic effects. The main aim of this research is to study the role of human umbilical cord-mesenchymal stem cells (UC-MSCs) derived CM in stimulating the proliferation of human keratinocytes (HaCaT).MethodsFirstly, MSC were isolated from human umbilical cords (UC) and the cells were then cultured in proliferative medium. We prepared and collected the CM after 72 h. Morphological changes were observed after the treatment of HaCaT cells with CM. To validate the findings, proliferation rate, clonal efficiency and also gene expression studies were performed.ResultsIncreased proliferation rate was observed and confirmed with the expression of Proliferating Cell Nuclear Antigen (PCNA) after treatment with HaCaT cells. Cell-cell strap formation was also observed when HaCaT cells were treated with CM for a period of 5–6 days which was confirmed by the increased expression of Collagen Type 1 Alpha 1 chain (Col1A1).ConclusionsOur results from present study depicts that the secretory components in the CM might play a significant role by interacting with keratinocytes to promote proliferation and migration. Thus, the CM stimulates cellular proliferation, epithelialization and migration of skin cells which might be the future promising application in wound healing.


Sign in / Sign up

Export Citation Format

Share Document