Variation in soft tissue chemistry among scyphozoan and cubozoan jellyfishes from the Great Barrier Reef, Australia

2012 ◽  
pp. 279-290
Author(s):  
Michelle A. Templeman ◽  
Michael J. Kingsford
2021 ◽  
pp. jgs2021-105
Author(s):  
Kate Trinajstic ◽  
Derek E.G. Briggs ◽  
John A. Long

Discoveries from the Late Devonian Gogo Formation, in the Canning Basin, Western Australia have provided insights into the origin and evolution of many unique gnathostome features such as the origins of teeth, internal fertilisation, air-breathing, transitional tissues between bone and cartilage, and insights into the fin to limb transition. Although vertebrate studies have dominated evolutionary work, invertebrate studies have added important insights into the palaeoecology of the site and demonstrated close faunal affinities along the margins of northern Gondwana and China. Geochemical analyses have broadened the understanding of the pathways involved in the exceptional preservation of this Devonian Konservat-Lagerstätte. Fossils from the Gogo Formation show extensive soft tissue preservation through phosphatization recording anatomical details not normally obtained from fossil sites.


1989 ◽  
Vol 21 (2) ◽  
pp. 31-38 ◽  
Author(s):  
Simon Woodley

The Great Barrier Reef is the largest coral reef system in the world. It is recognised and appreciated worldwide as a unique environment and for this reason has been inscribed on the World Heritage List. The Reef is economically-important to Queensland and Australia, supporting substantial tourism and fishing industries. Management of the Great Barrier Reef to ensure conservation of its natural qualities in perpetuity is achieved through the establishment of the Great Barrier Reef Marine Park. The maintenance of water quality to protect the reef and the industries which depend on it is becoming an increasingly important management issue requiring better knowledge and possibly new standards of treatment and discharge.


1994 ◽  
Vol 45 (1) ◽  
pp. 1 ◽  
Author(s):  
JH Middleton ◽  
P Coutis ◽  
DA Griffin ◽  
A Macks ◽  
A McTaggart ◽  
...  

Data acquired during a winter (May) cruise of the RV Franklin to the southern Great Barrier Reef indicate that the dynamics of the shelf/slope region are governed by the tides, the poleward-flowing East Australian Current (EAC), and the complex topography. Over the Marion Plateau in water deeper than - 100 m, the EAC appears to drive a slow clockwise circulation. Tides appear to be primarily responsible for shelf/slope currents in the upper layers, with evidence of nutrient uplift from the upper slope to the outer shelf proper in the Capricorn Channel. Elsewhere, the bottom Ekrnan flux of the strongly poleward-flowing EAC enhances the sloping isotherms associated with the longshore geostrophic balance, pumping nutrient-rich waters from depth to the upper continental slope. Generally, shelf waters are cooler than oceanic waters as a consequence of surface heat loss by radiation. A combination of heat loss and evaporation from waters flowing in the shallows of the Great Sandy Strait appears to result in denser 'winter mangrove waters' exporting low-oxygen, high-nutrient waters onto the shelf both north and south of Fraser Island; these subsequently mix with shelf waters and finally flow offshore at - 100 m depth, just above the salinity-maximum layer, causing anomalous nutrient values in the region of Fraser Island.


Sign in / Sign up

Export Citation Format

Share Document