Optimising the Geometry of Energy Absorbing Composite Tubes with Particular Reference to Rail Vehicle Application

Author(s):  
J. F. Kelly
2021 ◽  
pp. 114637
Author(s):  
Y. Duan ◽  
T. Zhang ◽  
J. Zhou ◽  
H. Xiao ◽  
X. Chen ◽  
...  

2021 ◽  
pp. 109963622110204
Author(s):  
HZ Jishi ◽  
RA Alia ◽  
WJ Cantwell

The energy-absorbing response of sandwich structures with exceptionally high levels of energy absorption is investigated. The sandwich panels are produced by fixing small composite tubes onto metal facings with surface features that reflect the internal geometry of the tubing. Small diameter tubes are employed to manufacture the cores, since it is well established that the specific energy absorption (SEA) characteristics of a composite tube increase as the inner dimension (diameter or wall-to-wall) to thickness ratio decreases. Tests have been undertaken on tubular arrays based on both circular and square composite tubes. The effect of varying the areal density of the tubular array within the core was investigated by systematically increasing the number of tubes from one to nine. An examination of the composites during the crushing process indicated that all of the tubes failed in a splaying process, involving significant fracturing of fibers and longitudinal splitting. The measured values of SEA remained relatively constant in most cases as the areal density of the tubular arrangement was increased, suggesting that cores could readily be designed to absorb known levels of applied external energy. Arrays based on circular tubes offered higher energy-absorbing characteristics than their square counterparts, with values in excess of 100 kJ/kg being recorded in some cases. It is believed that these tubular sandwich structures offer potential for use in components that are subjected to extreme dynamic loading, such as those associated with impact and blast.


2018 ◽  
Vol 125 ◽  
pp. 129-139 ◽  
Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Jiali Yan ◽  
Ping Xu ◽  
Yong Peng

2017 ◽  
Vol 21 (8) ◽  
pp. 2801-2815 ◽  
Author(s):  
A Alantali ◽  
RA Alia ◽  
R Umer ◽  
WJ Cantwell

The energy-absorbing behaviour of an aluminium honeycomb core reinforced with unidirectional and woven carbon fibre reinforced plastic composite tubes has been investigated experimentally at quasi-static rates of strain. Small diameter carbon fibre reinforced plastic tubes, with chamfered ends, were inserted into the cells of an aluminium honeycomb in order to yield a lightweight energy-absorbing material. The resulting data are compared with crushing tests on arrays of free-standing composite tubes, supported on a specially designed compression test fixture. The study continues with an investigation into size effects in the energy-absorbing response of these cellular materials, where compression tests are undertaken on four scaled sizes of reinforced honeycomb core. Crushing tests on the multi-tube arrays have shown that woven carbon fibre reinforced plastic tubes absorb significantly greater levels of energy than their unidirectional counterparts. Here, the specific energy absorption did not vary with the number of tubes in the array, with values for the woven tubes averaging 110 kJ/kg and those for the unidirectional tubes averaging 75 kJ/kg. Inserting composite tubes into aluminium honeycomb served to increase the measured specific energy absorption of the core, resulting in values of specific energy absorption of up to 100 kJ/kg being recorded in the woven-based system. Tests on four scaled sizes of core have shown that the measured SEA does not vary with specimen size, indicating that data generated on small samples can be used to represent the energy-absorbing response of larger, more representative components.


2021 ◽  
pp. 152808372199792
Author(s):  
A Praveen Kumar ◽  
J Nagarjun ◽  
Quanjin Ma

In recent years, light-weight nano composite materials have been progressively employed in the aviation, defense, naval and automotive manufacturing applications owing to their outstanding mechanical and crashworthiness characteristics. In this regard, nano composite cylindrical tubes could be significantly utilized as energy absorbing elements for dissipating the impact energy during vehicle collisions. The present research study aimed to examine the lateral crashworthiness response of Multi-Walled Carbon Nano Tubes (MWCNT) filled epoxy composite (basalt fabric and glass fabric) tubes of three different inner diameters using quasi-static crushing experiments. Crushing profiles and crush force–deformation curves of all the recommended typical tube samples are computed and discussed elaborately. The results obtained revealed that better crashworthiness characteristics of MWCNT reinforced epoxy composite tubes with a larger diameter, were owing to more promising crushing modes occurring during lateral compression. It is also found that the lateral crashworthiness response of the MWCNT filled glass fabric epoxy composite tubes was marginally superior to that of the MWCNT filled basalt fabric epoxy composite tubes. However, both the recommended composite cylindrical tubes with nano-fillers might be employed as energy dissipating elements in modern vehicles.


Sign in / Sign up

Export Citation Format

Share Document