Main features of the thermal regime of Lake Ladoga during the ice-free period

Author(s):  
Mikhail A. Naumenko ◽  
Sergei G. Karetnikov ◽  
Aleksei I. Tikhomirov
Keyword(s):  
1994 ◽  
Vol 39 (6) ◽  
pp. 1333-1348 ◽  
Author(s):  
Joakim Malm ◽  
Dmitrii Mironov ◽  
Arkadii Terzhevik ◽  
Lennart Jiinsson

1994 ◽  
Vol 29 (2-3) ◽  
pp. 423-439 ◽  
Author(s):  
M.A. Naumenko

Abstract Physical limnological experiments relating to water temperature and currents were conducted in lakes Ladoga and Onega over the period 1985–90. Details of the lake thermal cycle, thermal bar formation, circulation, and heat flux characteristics in the region of the thermal front in these two large lake systems are described. In addition, consequences relating to chemical and biological distributions in the area of thermal front development and progression are discussed.


Hydrobiologia ◽  
1996 ◽  
Vol 322 (1-3) ◽  
pp. 69-73 ◽  
Author(s):  
Mikhail A. Naumenko ◽  
Sergei G. Karetnikov ◽  
Aleksei I. Tikhomirov
Keyword(s):  

Author(s):  
Anna V. Ludikova

The pioneer diatom study of the Early Weichselian (Valdai) sediments in Lake Ladoga basin was performed. The specifics of the diatom assemblages (co-occurrence of ecologically incompatible taxa, poor species diversity, low diatom concentration and selective preservation) suggest that during the Early Weichselian time intense erosion of previously deposited marine Eemian (Mikulino) sediments prevailed, which resulted in re-deposition of marine diatoms. The sedimentation took place in high-energy environments unfavorable for diatom accumulation and preservation.


2012 ◽  
Vol 46 ◽  
pp. 298-305 ◽  
Author(s):  
A. D. Potemkin ◽  
T. Ahti

Riccia marginata Lindb. was described by S. O. Lindberg (1877) from the outskirts of the town of Sortavala near the north shore of Lake Ladoga, Republic of Karelia, Russia. The species has been forgotten in most recent liverwort accounts of Europe, including Russia. Lectotypification of R. marginata is provided. R. marginata shares most characters with R. beyrichiana Hampe ex Lehm. It differs from “typical” plants of R. beyrichiana in having smaller spores, with ± distinctly finely areolate to roughly papillose proximal surfaces and a narrower and shorter thallus, as well as in scarcity or absence of marginal hairs. It may represent continental populations of the suboceanic-submediterranean R. beyrichiana, known in Russia from the Leningrad Region and Karelia only. The variability of spore surfaces in R. beyrichiana is discussed and illustrated by SEM images. A comparison with the spores of R. bifurca Hoffm. is provided. The question how distinct R. marginata is from R. beyrichiana needs to be clarified by molecular studies in the future, when adequate material is available. R. marginata is for the time being, provisionally, included in R. beyrichiana.


Author(s):  
Nataliya Belova ◽  
Nataliya Belova ◽  
Alisa Baranskaya ◽  
Alisa Baranskaya ◽  
Osip Kokin ◽  
...  

The coasts of Baydaratskaya Bay are composed by loose frozen sediments. At Yamal Peninsula accumulative coasts are predominant at the site where pipeline crosses the coast, while thermoabrasional coast are prevail at the Ural coast crossing site. Coastal dynamics monitoring on both sites is conducted using field and remote methods starting from the end of 1980s. As a result of construction in the coastal zone the relief morphology was disturbed, both lithodynamics and thermal regime of the permafrost within the areas of several km around the sites where gas pipeline crosses coastline was changed. At Yamal coast massive removal of deposits from the beach and tideflat took place. The morphology of barrier beach, which previously was a natural wave energy dissipater, was disturbed. This promoted inland penetration of storm surges and permafrost degradation under the barrier beach. At Ural coast the topsoil was disrupted by construction trucks, which affected thermal regime of the upper part of permafrost and lead to active layer deepening. Thermoerosion and thermoabrasion processes have activated on coasts, especially at areas with icy sediments, ice wedges and massive ice beds. Construction of cofferdams resulted in overlapping of sediments transit on both coasts and caused sediment deficit on nearby nearshore zone areas. The result of technogenic disturbances was widespread coastal erosion activation, which catastrophic scale is facilitated by climate warming in the Arctic.


Author(s):  
Artem Lapenkov ◽  
Artem Lapenkov ◽  
Yury Zuyev ◽  
Yury Zuyev ◽  
Nadezhda Zuyeva ◽  
...  

Coastal zones have great diversity of resources. The shallow water zones contain the most of plant and benthic communities. A description of relief and type of ground is needed for the rigorous monitoring of biota and environmental condition of coastal zone. Generally, on the basis of these data the investigation methods of the coastal zone are selected. The shallows research strategy has been developed by us for northern part of the Lake Ladoga. If the coastal areas are characterized by great depth and flat topography, then sonar’s can be used to describe them and samples of ground can be taken by bottom grabs. In the Lake Ladoga these methods don’t operate correctly by reason of the compound bottom relief and the fact that a sizeable part of the bottom is occupied by hard ground. Therefore, our investigations base on the diving transect method of Golikov and Skarlato (1965). A diver moves along transects. He registers the depth, length to coastline, water temperature, relief and ground, edificators and records video. In the laboratory all these data are decoded and used for mapping of bays. Studies of plant communities have been performed and strategy for research of benthic communities in complex relief and hard ground conditions has been developed based on the descriptions of shallow waters. Description of the Malay Nikonovskia Bay bottom has given an opportunity to estimate changes in the bottom of the bay under the influence of the trout farm.


Sign in / Sign up

Export Citation Format

Share Document