Lake Ladoga Region: human impacts and recent environmental changes

Author(s):  
Grigorii A. Isachenko
Hydrobiologia ◽  
1996 ◽  
Vol 322 (1-3) ◽  
pp. 217-221 ◽  
Author(s):  
Grigorii A. Isachenko

2021 ◽  
Vol 4 ◽  
Author(s):  
Ondrej Vargovčík ◽  
Zuzana Čiamporová-Zaťovičová ◽  
Fedor Čiampor Jr

State of ecosystems and biodiversity protection are becoming the key interests for modern society due to climate change and negative human impacts (Leese 2018). Environmental changes in freshwaters are indicated also by benthic communities, especially in sensitive ecosystems like alpine lakes (Fjellheim 2009). Moreover, remoteness and isolation of alpine lakes make them a source of biodiversity, which is worth conserving (Hamerlík 2014). A promising tool for efficient large-scale monitoring of aquatic communities is DNA metabarcoding (Leese 2018). In this study, we applied metabarcoding to analyse macrozoobenthos of 12 lakes in the Tatra Mountains, using benthic bulk samples and eDNA filtered from water (Fig. 1). In compliance with recent publications, eDNA amplified with BF3/BR2 primers resulted in high percentage of non-invertebrate reads (Leese 2021). Based on in silico tests with the obtained sequences, we confirm that the recently developed EPTDr2n primer enables minimizing non-target amplification even with eDNA filtered from alpine-lake water (Elbrecht and Leese 2017). This ability is facilitated by 3’ end of the primer and we observed the two important mismatches in non-target sequences from our study (Leese 2021). Thus, our future analyses of eDNA (and bulk-sample fixative) will benefit from the new primer. Concerning bulk samples, a wide range of invertebrate taxa was assigned to the OTUs and they showed good congruence with previous studies using morphological determination (e.g. Krno 2006). Certain differences with (and among) the previous records per lake were observed, which could suggest ecological changes, but at the moment the influence of sampling error cannot be excluded. In eDNA, several taxa were congruent with the previous records, but their amount and read abundance was considerably lower due to non-target amplification. Apart from that, filling gaps in barcoding databases remains one of our priorities, as identification to species or genus level was not yet possible for some invertebrate OTUs. In addition, we subjected the NGS data to denoising and abundance-filtering in order to explore haplotype-level diversity (Andújar 2021). Although more comprehensive conclusions will be possible only after obtaining data from more lakes and years, already the two metabarcoding experiments presented here enabled us to efficiently detect within-species genetic diversity and identify a large variety of taxa, including groups that would otherwise be omitted or very challenging to identify. This underlines the potential of DNA methods to provide valuable ecological and biodiversity data across the tree of life for modern biomonitoring. This study was realized with support from VEGA 2/0030/17 and VEGA 2/0084/21.


Author(s):  
Thomas T. Veblen ◽  
Kenneth R. Young

An important goal of this book has been to provide a comprehensive understanding of the physical geography and landscape origins of South America as important background to assessing the probabilities and consequences of future environmental changes. Such background is essential to informed discussions of environmental management and the development of policy options designed to prepare local, national, and international societies for future changes. A unifying theme of this book has been the elucidation of how natural processes and human activities have interacted in the distant and recent past to create the modern landscapes of the continent. This retrospective appreciation of how the current landscapes have been shaped by nature and humans will guide our discussion of possible future trajectories of South American environments. There is abundant evidence from all regions of South America, from Tierra del Fuego to the Isthmus of Panama, that environmental change, not stasis, has been the norm. Given that fact, the history, timing, and recurrence intervals of this dynamism are all crucial pieces of information. The antiquity and widespread distribution of changes associated with the indigenous population are now well established. Rates and intensities of changes related to indigenous activities varied widely, but even in regions formerly believed to have experienced little or no pre-European impacts we now recognize the effects of early humans on features such as soils and vegetation. Colonization by Europeans mainly during the sixteenth century modified or in some cases replaced indigenous land-use practices and initiated changes that have continued to the present. Complementing these broad historical treatments of human impacts, other chapters have examined in detail the environmental impacts of agriculture (chapter 18) and urbanism (chapter 20), and the disruptions associated with El Niño–Southern Oscillation events. The goal of this final synthesis is to identify the major drivers of change and to discuss briefly their likely impacts on South American environments and resources in the near and medium-term future. Our intent is not to make or defend predictions, but rather to identify broad causes and specific drivers of environmental change to inform discussions of policy options for mitigating undesirable changes and to facilitate potential societal adaptations to them.


Radiocarbon ◽  
2019 ◽  
Vol 61 (2) ◽  
pp. 629-647 ◽  
Author(s):  
Magdalena M E Schmid ◽  
Rachel Wood ◽  
Anthony J Newton ◽  
Orri Vésteinsson ◽  
Andrew J Dugmore

ABSTRACTAccurately dating when people first colonized new areas is vital for understanding the pace of past cultural and environmental changes, including questions of mobility, human impacts and human responses to climate change. Establishing effective chronologies of these events requires the synthesis of multiple radiocarbon (14C) dates. Various “chronometric hygiene” protocols have been used to refine 14C dating of island colonization, but they can discard up to 95% of available 14C dates leaving very small datasets for further analysis. Despite their foundation in sound theory, without independent tests we cannot know if these protocols are apt, too strict or too lax. In Iceland, an ice core-dated tephrochronology of the archaeology of first settlement enables us to evaluate the accuracy of 14C chronologies. This approach demonstrated that the inclusion of a wider range of 14C samples in Bayesian models improves the precision, but does not affect the model outcome. Therefore, based on our assessments, we advocate a new protocol that works with a much wider range of samples and where outlying 14C dates are systematically disqualified using Bayesian Outlier Models. We show that this approach can produce robust termini ante quos for colonization events and may be usefully applied elsewhere.


Radiocarbon ◽  
2015 ◽  
Vol 57 (5) ◽  
pp. 737-753 ◽  
Author(s):  
Walter Mareschi Bissa ◽  
Mauro B de Toledo

This article presents a palynological study carried out on a sediment core from a peat deposit in Serra de Botucatu, in SÃo Paulo State, southeastern Brazilian Plateau. This region has been covered by grassland vegetation and forest patches throughout the recorded period. AMS radiocarbon dating plus palynological analysis of 27 samples from the sediment core allowed the recognition of several environmental changes that took place during the last 33,000 yr recorded in the core. The relationship between sedimentation rates and changes in the abundance of plants recognized through their pollen record, particularly a few important indicator species, provided the paleoenvironmental history for the Serra de Botucatu region, allowing the identification of changes in climate conditions and comparison with other regions in Brazil. One of the most remarkable features of this record is the cold and humid conditions during the Last Glacial Maximum, which diverges from previous interpretations for southeastern and southern Brazil but is in good agreement with paleoclimatic data from trace elements from cave stalagmites in SE Brazil. No indications of human impacts on the vegetation were found in this record.


Wetlands ◽  
2016 ◽  
Vol 36 (S1) ◽  
pp. 1-9 ◽  
Author(s):  
Baoshan Cui ◽  
Qiang He ◽  
Binhe Gu ◽  
Junhong Bai ◽  
Xinhui Liu

2020 ◽  
Author(s):  
Jonas Satkūnas ◽  
Vaidotas Valskys ◽  
Gytautas Ignatavičius ◽  
Alma Grigienė

Abstract Geochemical and lithological parameters of sapropel in lakes, combined with pollen data and radiocarbon 14C datings, contain a wide spectrum of environmental information. This includes records of fluctuations of water level and changes of conditions of sedimentation, accumulation of organic matter and chemical elements due to climate change, human impacts and other environmental changes. Four lakes with different trophic states and anthropogenic pressures were chosen for this study in Lithuania. Lake Balsys has a mesotrophic state while Lakes Didžiulis, Salotė and Gineitiškės have eutrophic states. X-ray fluorescence spectrometry was used to analyse concentrations of chemical elements, loss-on-ignition to determine organic, mineral and carbonate matter, pollen analysis and radiocarbon dating were applied for determination of paleoenvironmental conditions and age of sediments. Results of this study demonstrated rather different chemical compositions of sapropels in these lakes. Human impacts are evident in the upper layers of sapropel in all lakes, however very specific and complex geochemical composition was determined in deeper layers of sapropel in the different lakes. Higher concentrations of elements like Cr and Zn are expected in deeper layers of sapropel and are attributed to lithogenic association of trace elements. Pb and Cu were detected in upper layers of sapropel which indicates the impact of anthropogenic activity. Sapropel of eutrophic lakes (Salotė and Gineitiškės) is enriched by high concentrations of heavy metals (galbūt naudoti tiesiog chemical elements?) (Pb, Cr, Cu, Zn). Their main source was multidimensional anthropogenic pollution leading to a biogenic-anthropogenic association of elements. Sapropel with low concentrations of heavy metals exhibits a different inter-association matrix because most of the elements tend to form lithogenic-clastogenic associations.


2019 ◽  
Vol 11 (3) ◽  
pp. 343 ◽  
Author(s):  
Huiying Li ◽  
Dehua Mao ◽  
Xiaoyan Li ◽  
Zongming Wang ◽  
Cuizhen Wang

Areal changes of high-altitude inland lakes on the Qaidam Basin (QB) of the Tibetan Plateau are reliable indicators of climate change and anthropogenic disturbance. Due to the physical difficulties to access, our knowledge of the spatial patterns and processes of climatic and human impacts on the Basin has been limited. Focusing on lake area changes, this study used long-term Landsat images to map the patterns of lakes and glaciers in 1977, 1990, 2000, and 2015, and to monitor the spatially explicit changes of lakes between 1977 and 2015. Results revealed that the total number of lakes (area > 0.5 km2) increased by 18, while their total area expanded by 29.8%, from 1761.5 ± 88.1 km2 to 2285.9 ± 91.4 km2. Meanwhile, glaciers have decreased in area by 259.16 km2 in the past four decades. The structural equation model (SEM) was applied to examine the integrative effects of natural and anthropogenic factors on lake area. Precipitation change exhibited the most significant influence on lake area in the QB from 1977 to 2000, while human activities also played an important role in the expansion of lakes in the QB in the period 2000–2015. In particular, extensive exploitation of salt lakes as mining resources resulted in severe changes in lake area and landscape. The continuously expanding salt lakes inundated the road infrastructure nearby, posing great threats to road safety. This study shed new light on the impacts of recent environmental changes and human interventions on lakes in the Qaidam Basin, which could assist policy-making for protecting the lakes and for strengthening the ecological improvement of this vast, arid basin.


Sign in / Sign up

Export Citation Format

Share Document