scholarly journals Enhancing Radiocarbon Chronologies of Colonization: Chronometric Hygiene Revisited

Radiocarbon ◽  
2019 ◽  
Vol 61 (2) ◽  
pp. 629-647 ◽  
Author(s):  
Magdalena M E Schmid ◽  
Rachel Wood ◽  
Anthony J Newton ◽  
Orri Vésteinsson ◽  
Andrew J Dugmore

ABSTRACTAccurately dating when people first colonized new areas is vital for understanding the pace of past cultural and environmental changes, including questions of mobility, human impacts and human responses to climate change. Establishing effective chronologies of these events requires the synthesis of multiple radiocarbon (14C) dates. Various “chronometric hygiene” protocols have been used to refine 14C dating of island colonization, but they can discard up to 95% of available 14C dates leaving very small datasets for further analysis. Despite their foundation in sound theory, without independent tests we cannot know if these protocols are apt, too strict or too lax. In Iceland, an ice core-dated tephrochronology of the archaeology of first settlement enables us to evaluate the accuracy of 14C chronologies. This approach demonstrated that the inclusion of a wider range of 14C samples in Bayesian models improves the precision, but does not affect the model outcome. Therefore, based on our assessments, we advocate a new protocol that works with a much wider range of samples and where outlying 14C dates are systematically disqualified using Bayesian Outlier Models. We show that this approach can produce robust termini ante quos for colonization events and may be usefully applied elsewhere.

2008 ◽  
Vol 21 (1) ◽  
pp. 35-49 ◽  
Author(s):  
Krystyna M. Saunders ◽  
Dominic A. Hodgson ◽  
Andrew McMinn

AbstractThis study is the first published survey of diatom-environment relationships on sub-Antarctic Macquarie Island. Fifty-eight sites in 50 coastal and inland lakes were sampled for benthic diatoms and water chemistry. 208 diatom species from 34 genera were identified. Multivariate analyses indicated that the lakes were distributed along nutrient and conductivity gradients. Conductivity, pH, phosphate (SRP), silicate and temperature all explained independent portions of the variance in the diatom data. Transfer functions provide a quantitative basis for palaeolimnological studies of past climate change and human impacts, and can be used to establish baseline conditions for assessing the impacts of recent climate change and the introduction of non-native plants and animals. Statistically robust diatom transfer functions for conductivity, phosphate and silicate were developed, while pH and temperature transfer functions performed less well. The lower predictive abilities of the pH and temperature transfer functions probably reflect the broad pH tolerance range of diatoms on Macquarie Island and uneven distribution of lakes along the temperature gradient. This study contributes to understanding the current ecological distribution of Macquarie Island diatoms and provides transfer functions that will be applied in studies of diatoms in lake sediment cores to quantitatively reconstruct past environmental changes.


2019 ◽  
Vol 15 (9) ◽  
pp. 20190491 ◽  
Author(s):  
Nicolas Dussex ◽  
Johanna von Seth ◽  
Michael Knapp ◽  
Olga Kardailsky ◽  
Bruce C. Robertson ◽  
...  

Human intervention, pre-human climate change (or a combination of both), as well as genetic effects, contribute to species extinctions. While many species from oceanic islands have gone extinct due to direct human impacts, the effects of pre-human climate change and human settlement on the genomic diversity of insular species and the role that loss of genomic diversity played in their extinctions remains largely unexplored. To address this question, we sequenced whole genomes of two extinct New Zealand passerines, the huia ( Heteralocha acutirostris ) and South Island kōkako ( Callaeas cinereus ). Both species showed similar demographic trajectories throughout the Pleistocene. However, the South Island kōkako continued to decline after the last glaciation, while the huia experienced some recovery. Moreover, there was no indication of inbreeding resulting from recent mating among closely related individuals in either species. This latter result indicates that population fragmentation associated with forest clearing by Maōri may not have been strong enough to lead to an increase in inbreeding and exposure to genomic erosion. While genomic erosion may not have directly contributed to their extinctions, further habitat fragmentation and the introduction of mammalian predators by Europeans may have been an important driver of extinction in huia and South Island kōkako.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yun-Hung Kuang ◽  
Yu-Fu Fang ◽  
Shau-Ching Lin ◽  
Shin-Fu Tsai ◽  
Zhi-Wei Yang ◽  
...  

Abstract Background The impact of climate change on insect resistance genes is elusive. Hence, we investigated the responses of rice near-isogenic lines (NILs) that carry resistance genes against brown planthopper (BPH) under different environmental conditions. Results We tested these NILs under three environmental settings (the atmospheric temperature with corresponding carbon dioxide at the ambient, year 2050 and year 2100) based on the Intergovernmental Panel on Climate Change prediction. Comparing between different environments, two of nine NILs that carried a single BPH-resistant gene maintained their resistance under the environmental changes, whereas two of three NILs showed gene pyramiding with two maintained BPH resistance genes despite the environmental changes. In addition, two NILs (NIL-BPH17 and NIL-BPH20) were examined in their antibiosis and antixenosis effects under these environmental changes. BPH showed different responses to these two NILs, where the inhibitory effect of NIL-BPH17 on the BPH growth and development was unaffected, while NIL-BPH20 may have lost its resistance during the environmental changes. Conclusion Our results indicate that BPH resistance genes could be affected by climate change. NIL-BPH17 has a strong inhibitory effect on BPH feeding on phloem and would be unaffected by environmental changes, while NIL-BPH20 would lose its ability during the environmental changes.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 243
Author(s):  
Javier Alcocer ◽  
Luis A. Oseguera ◽  
Diana Ibarra-Morales ◽  
Elva Escobar ◽  
Lucero García-Cid

High-mountain lakes are among the most comparable ecosystems globally and recognized sentinels of global change. The present study pursued to identify how the benthic macroinvertebrates (BMI) communities of two tropical, high mountain lakes, El Sol and La Luna, Central Mexico, have been affected by global/regional environmental pressures. We compared the environmental characteristics and the BMI communities between 2000–2001 and 2017–2018. We identified three principal environmental changes (the air and water temperature increased, the lakes’ water level declined, and the pH augmented and became more variable), and four principal ecological changes in the BMI communities [a species richness reduction (7 to 4), a composition change, and a dominant species replacement all of them in Lake El Sol, a species richness increase (2 to 4) in Lake La Luna, and a drastic reduction in density (38% and 90%) and biomass (92%) in both lakes]. The air and water temperature increased 0.5 °C, and lakes water level declined 1.5 m, all suggesting an outcome of climate change. Contrarily to the expected acidification associated with acid precipitation, both lakes deacidified, and the annual pH fluctuation augmented. The causes of the deacidification and the deleterious impacts on the BMI communities remained to be identified.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 43
Author(s):  
Stella M. Moreiras ◽  
Sergio A. Sepúlveda ◽  
Mariana Correas-González ◽  
Carolina Lauro ◽  
Iván Vergara ◽  
...  

This review paper compiles research related to debris flows and hyperconcentrated flows in the central Andes (30°–33° S), updating the knowledge of these phenomena in this semiarid region. Continuous records of these phenomena are lacking through the Andean region; intense precipitations, sudden snowmelt, increased temperatures on high relief mountain areas, and permafrost degradation are related to violent flow discharges. Documented catastrophic consequences related to these geoclimatic events highlight the need to improve their understanding in order to prepare the Andean communities for this latent danger. An amplified impact is expected not only due to environmental changes potentially linked to climate change but also due to rising exposure linked to urban expansion toward more susceptible or unstable areas. This review highlights as well the need for the implementation of preventive measures to reduce the negative impacts and vulnerability of the Andean communities in the global warming context.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Funing Tian ◽  
Simon Roux ◽  
M. Consuelo Gazitúa ◽  
Natalie E. Solonenko ◽  
...  

Abstract Background Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. Results We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. Conclusions Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally.


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


Sign in / Sign up

Export Citation Format

Share Document