Fundamental Properties and Nanoscale Aspects of Schottky Barriers

Author(s):  
R. L. Meirhaeghe
Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 298
Author(s):  
Marilena Vivona ◽  
Filippo Giannazzo ◽  
Fabrizio Roccaforte

Silicon carbide (4H-SiC) Schottky diodes have reached a mature level of technology and are today essential elements in many applications of power electronics. In this context, the study of Schottky barriers on 4H-SiC is of primary importance, since a deeper understanding of the metal/4H-SiC interface is the prerequisite to improving the electrical properties of these devices. To this aim, over the last three decades, many efforts have been devoted to developing the technology for 4H-SiC-based Schottky diodes. In this review paper, after a brief introduction to the fundamental properties and electrical characterization of metal/4H-SiC Schottky barriers, an overview of the best-established materials and processing for the fabrication of Schottky contacts to 4H-SiC is given. Afterwards, besides the consolidated approaches, a variety of nonconventional methods proposed in literature to control the Schottky barrier properties for specific applications is presented. Besides the possibility of gaining insight into the physical characteristics of the Schottky contact, this subject is of particular interest for the device makers, in order to develop a new class of Schottky diodes with superior characteristics.


1977 ◽  
Vol 38 (11) ◽  
pp. 1443-1448 ◽  
Author(s):  
G. Sarrabayrouse ◽  
J. Buxo ◽  
D. Esteve

2003 ◽  
Vol 762 ◽  
Author(s):  
J. David Cohen

AbstractThis paper first briefly reviews a few of the early studies that established some of the salient features of light-induced degradation in a-Si,Ge:H. In particular, I discuss the fact that both Si and Ge metastable dangling bonds are involved. I then review some of the recent studies carried out by members of my laboratory concerning the details of degradation in the low Ge fraction alloys utilizing the modulated photocurrent method to monitor the individual changes in the Si and Ge deep defects. By relating the metastable creation and annealing behavior of these two types of defects, new insights into the fundamental properties of metastable defects have been obtained for amorphous silicon materials in general. I will conclude with a brief discussion of the microscopic mechanisms that may be responsible.


2014 ◽  
Vol 68 (8) ◽  
pp. 837-840
Author(s):  
Tsuguyuki Saito ◽  
Yuri Kobayashi ◽  
Shuji Fujisawa ◽  
Chun-Nan Wu ◽  
Akira Isogai

2018 ◽  
Vol 72 (7) ◽  
pp. 715-720
Author(s):  
Yukinori Kobayashi ◽  
Yasutomo Noishiki ◽  
Manabu Yamamoto

Author(s):  
U. Kerst ◽  
P. Sadewater ◽  
R. Schlangen ◽  
C. Boit ◽  
R. Leihkauf ◽  
...  

Abstract The feasibility of low-ohmic FIB contacts to silicon with a localized silicidation was presented at ISTFA 2004 [1]. We have systematically explored options in contacting diffusions with FIB metal depositions directly. A demonstration of a 200nm x 200nm contact on source/drain diffusion level is given. The remaining article focuses on the properties of FIB deposited contacts on differently doped n-type Silicon. After the ion beam assisted platinum deposition a silicide was formed using a forming current in two configurations. The electrical properties of the contacts are compared to furnace anneal standards. Parameters of Schottky-barriers and thermal effects of the formation current are studied with numerical simulation. TEM images and material analysis of the low ohmic contacts show a Pt-silicide formed on a silicon surface with no visible defects. The findings indicate which process parameters need a more detailed investigation in order to establish values for a practical process.


Sign in / Sign up

Export Citation Format

Share Document