Genetics and Breeding for Bruchid Resistance in Asiatic Vigna Species

Author(s):  
G. C. J. Fernandez ◽  
N. S. Talekar
2018 ◽  
Vol 9 ◽  
Author(s):  
Hien P. Nguyen ◽  
Safirah T. N. Ratu ◽  
Michiko Yasuda ◽  
Michael Göttfert ◽  
Shin Okazaki

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pongpan Songwattana ◽  
Clémence Chaintreuil ◽  
Jenjira Wongdee ◽  
Albin Teulet ◽  
Mamadou Mbaye ◽  
...  

AbstractThe Bradyrhizobium vignae strain ORS3257 is an elite strain recommended for cowpea inoculation in Senegal. This strain was recently shown to establish symbioses on some Aeschynomene species using a cocktail of Type III effectors (T3Es) secreted by the T3SS machinery. In this study, using a collection of mutants in different T3Es genes, we sought to identify the effectors that modulate the symbiotic properties of ORS3257 in three Vigna species (V. unguiculata, V. radiata and V. mungo). While the T3SS had a positive impact on the symbiotic efficiency of the strain in V. unguiculata and V. mungo, it blocked symbiosis with V. radiata. The combination of effectors promoting nodulation in V. unguiculata and V. mungo differed, in both cases, NopT and NopAB were involved, suggesting they are key determinants for nodulation, and to a lesser extent, NopM1 and NopP1, which are additionally required for optimal symbiosis with V. mungo. In contrast, only one effector, NopP2, was identified as the cause of the incompatibility between ORS3257 and V. radiata. The identification of key effectors which promote symbiotic efficiency or render the interaction incompatible is important for the development of inoculation strategies to improve the growth of Vigna species cultivated in Africa and Asia.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 622 ◽  
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Aditya Pratap ◽  
Rakesh Pandey ◽  
Shalini Purwar ◽  
...  

Yellow mosaic disease (YMD) affects several types of leguminous crops, including the Vigna species, which comprises a number of commercially important pulse crops. YMD is characterized by the formation of a bright yellow mosaic pattern on the leaves; in severe forms, this pattern can also be seen on stems and pods. This disease leads to tremendous yield losses, even up to 100%, in addition to deterioration in seed quality. Symptoms of this disease are similar among affected plants; YMD is not limited to mungbean (Vigna radiata L. Wilczek) and also affects other collateral and alternate hosts. In the last decade, rapid advancements in molecular detection techniques have been made, leading to an improved understanding of YMD-causing viruses. Three distinct bipartite begomoviruses, namely, Mungbean Yellow Mosaic India Virus (MYMIV), Mungbean Yellow Mosaic Virus (MYMV), and Horsegram Yellow Mosaic Virus (HgYMV), are known to cause YMD in Vigna spp. Vigna crops serve as an excellent protein source for vegetarians worldwide; moreover, they aid in improving soil health by fixing atmospheric nitrogen through a symbiotic association with Rhizobium bacteria. The loss in the yield of these short-duration crops due to YMD, thus, needs to be checked. This review highlights the discoveries that have been made regarding various aspects of YMD affecting mungbean, including the determination of YMD-causing viruses and strategies used to develop high-yielding YMD-resistant mungbean varieties that harness the potential of related Vigna species through the use of different omics approaches.


Author(s):  
Neelam Bhardwaj ◽  
Tanuja Kapoor ◽  
Parveen Sharma

Background: Ricebean [Vigna umbellata (Thunb.) Ohwi and Ohashi] is a multipurpose grain legume of Mid-Himalayan region mainly cultivated for food, fodder, green manure and has emerged as a good alternative to other pulse crops such as blackgram and greengram which do not flourish in this region due to their susceptibility to cold temperature stress. It is well reported that the nutritional value of ricebean is higher as compared to many other legumes of the Vigna family and has some superior qualities greater than greengram, blackgram and cowpea. It is also resistance to drought, diseases and pests specially the storage pests during growth period and possesses high percentage of seed viability. Despite having all the favourable traits, it is not much popular among the farmers due to the late maturity and indeterminate growth habit. Instead, farmers prefer other crops which fit easily into their cropping pattern and are easy to harvest. A little genetic improvement with respect to maturity and growth habit can revive its cultivation and show great results in its production as a valuable crop. Thus, the present investigation was formulated to introgress desired traits from mash and adzukibean into otherwise high yielding ricebean genotypes using inter-specific hybridization. Methods: The present investigation involves the inter-specific hybridization among three Vigna species viz, ricebean (Vigna umbellata), blackgram (Vigna mungo) and adzukibean (Vigna angularis). In the year 2017, six genotypes of ricebean (RBHP-36, RBHP-38, RBHP-43, RBHP-61, RBHP-107 and RBHP-108) were crossed with two genotypes of blackgram (HimMash-1 and Palampur-93) and one genotype of adzukibean (HPU-51) in glasshouse conditions. Result: The study revealed that successful crosses were possible only between ricebean and blackgram. All the Inter-specific crosses showed very low pod set percentage ranging from 0 -4% and F1 germination percentage ranging from 20-42%. Pod set percentage and pods harvested varied with combinations of two parental cultivars of each species for most of the inter-specific hybrids. The successful pod set was observed in 16 out of 36 inter-specific crosses. Highest crossability was observed in blackgram and ricebean crosses. Crossing of adzukibean with ricebean showed poor or no pod set among the entire cross combinations which are attributed to early embryo abortion and degeneration during embryogenesis.


2020 ◽  
Vol 67 (4) ◽  
pp. 985-997
Author(s):  
Ioannis Τ. Tsialtas ◽  
Georgia S. Theologidou ◽  
Fotis Bilias ◽  
Maria Irakli ◽  
Athina Lazaridou

Euphytica ◽  
2018 ◽  
Vol 214 (12) ◽  
Author(s):  
Ioannis Τ. Tsialtas ◽  
Maria Irakli ◽  
Athina Lazaridou
Keyword(s):  

2020 ◽  
Vol 67 (2) ◽  
pp. 523-529
Author(s):  
Neeta Singh ◽  
Padmavati G. Gore ◽  
J. Aravind
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document