Radio and X-Ray Emission in Early Type Galaxies

Author(s):  
Ginevra Trinchieri
Keyword(s):  
2021 ◽  
Vol 502 (1) ◽  
pp. 1487-1493
Author(s):  
Anton T Jaelani ◽  
Cristian E Rusu ◽  
Issha Kayo ◽  
Anupreeta More ◽  
Alessandro Sonnenfeld ◽  
...  

ABSTRACT We present spectroscopic confirmation of three new two-image gravitationally lensed quasars, compiled from existing strong lens and X-ray catalogues. Images of HSC J091843.27–022007.5 show a red galaxy with two blue point sources at either side, separated by 2.26 arcsec. This system has a source and a lens redshifts zs = 0.804 and zℓ = 0.459, respectively, as obtained by our follow-up spectroscopic data. CXCO J100201.50+020330.0 shows two point sources separated by 0.85 arcsec on either side of an early-type galaxy. The follow-up spectroscopic data confirm the fainter quasar has the same redshift with the brighter quasar from the Sloan Digital Sky Survey (SDSS) fiber spectrum at zs = 2.016. The deflecting foreground galaxy is a typical early-type galaxy at a redshift of zℓ = 0.439. SDSS J135944.21+012809.8 has two point sources with quasar spectra at the same redshift zs = 1.096, separated by 1.05 arcsec, and fits to the HSC images confirm the presence of a galaxy between these. These discoveries demonstrate the power of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)’s deep imaging and wide sky coverage. Combined with existing X-ray source catalogues and follow-up spectroscopy, the HSC-SSP provides us unique opportunities to find multiple-image quasars lensed by a foreground galaxy.


2020 ◽  
Vol 15 (S359) ◽  
pp. 119-125
Author(s):  
W. Forman ◽  
C. Jones ◽  
A. Bogdan ◽  
R. Kraft ◽  
E. Churazov ◽  
...  

AbstractOptically luminous early type galaxies host X-ray luminous, hot atmospheres. These hot atmospheres, which we refer to as coronae, undergo the same cooling and feedback processes as are commonly found in their more massive cousins, the gas rich atmospheres of galaxy groups and galaxy clusters. In particular, the hot coronae around galaxies radiatively cool and show cavities in X-ray images that are filled with relativistic plasma originating from jets powered by supermassive black holes (SMBH) at the galaxy centers. We discuss the SMBH feedback using an X-ray survey of early type galaxies carried out using Chandra X-ray Observatory observations. Early type galaxies with coronae very commonly have weak X-ray active nuclei and have associated radio sources. Based on the enthalpy of observed cavities in the coronae, there is sufficient energy to “balance” the observed radiative cooling. There are a very few remarkable examples of optically faint galaxies that are 1) unusually X-ray luminous, 2) have large dark matter halo masses, and 3) have large SMBHs (e.g., NGC4342 and NGC4291). These properties suggest that, in some galaxies, star formation may have been truncated at early times, breaking the simple scaling relations.


1998 ◽  
Vol 188 ◽  
pp. 224-225
Author(s):  
S. Tanaka ◽  
S. Kitamoto ◽  
T. Suzuki ◽  
K. Torii ◽  
M.F. Corcoran ◽  
...  

X-rays from early-type stars are emitted by the corona or the stellar wind. The materials in the surface layer of early-type stars are not contaminated by nuclear reactions in the stellar inside. Therefore, abundance study of the early-type stars provides us an information of the abundances of the original gas. However, the X-ray observations indicate low-metallicity, which is about 0.3 times of cosmic abundances. This fact raises the problem on the cosmic abundances.


2005 ◽  
Vol 160 (2) ◽  
pp. 557-581 ◽  
Author(s):  
B. Stelzer ◽  
E. Flaccomio ◽  
T. Montmerle ◽  
G. Micela ◽  
S. Sciortino ◽  
...  

2000 ◽  
Vol 174 ◽  
pp. 187-196
Author(s):  
Trevor J. Ponman ◽  
Ed Lloyd-Davies ◽  
Stephen F. Helsdon

AbstractThe study of the relationship between the hot gas in groups and the galaxies they contain can help to constrain the evolution of both galaxies and groups. Here we present evidence that the intergalactic medium in groups has been strongly affected by preheating associated with galaxy formation which mostly preceded group collapse. The presence of this effect appears to be unrelated to the morphology of group galaxies, which supports models in which galaxy types are not primordial. We also present preliminary evidence that early-type galaxies in groups are not underluminous in the X-ray compared to isolated galaxies, suggesting that their dark halos may not have been substantially stripped.


Sign in / Sign up

Export Citation Format

Share Document