scholarly journals Galaxies and the intergalactic medium in groups

2000 ◽  
Vol 174 ◽  
pp. 187-196
Author(s):  
Trevor J. Ponman ◽  
Ed Lloyd-Davies ◽  
Stephen F. Helsdon

AbstractThe study of the relationship between the hot gas in groups and the galaxies they contain can help to constrain the evolution of both galaxies and groups. Here we present evidence that the intergalactic medium in groups has been strongly affected by preheating associated with galaxy formation which mostly preceded group collapse. The presence of this effect appears to be unrelated to the morphology of group galaxies, which supports models in which galaxy types are not primordial. We also present preliminary evidence that early-type galaxies in groups are not underluminous in the X-ray compared to isolated galaxies, suggesting that their dark halos may not have been substantially stripped.

2000 ◽  
Vol 174 ◽  
pp. 167-173 ◽  
Author(s):  
L. Verdes-Montenegro ◽  
M. S. Yun ◽  
B. A. Williams ◽  
W. K. Huchtmeier ◽  
A. Del Olmo ◽  
...  

AbstractWe present a global study of Hɪ spectral line mapping for 16 Hickson Compact Groups (HCGs) combining new and unpublished VLA data, plus the analysis of the Hɪ content of individual galaxies. Sixty percent of the groups show morphological and kinematical signs of perturbations (from multiple tidal features to concentration of the Hɪ in a single enveloping cloud) and sixty five of the resolved galaxies are found to be Hɪ deficient with respect to a sample of isolated galaxies. In total, 77% of the groups suffer interactions among all its members which provides strong evidence of their reality. We find that dynamical evolution does not always produce Hɪ deficiency, but when this deficiency is observed, it appears to correlate with a high group velocity dispersion and in some cases with the presence of a first-ranked elliptical. The X-ray data available for our sample are not sensitive enough for a comparison with the Hɪ mass; however this study does suggest a correlation between Hɪ deficiency and hot gas since velocity dispersions are known from the literature to correlate with X-ray luminosity.


2019 ◽  
Vol 627 ◽  
pp. A5 ◽  
Author(s):  
F. Vazza ◽  
S. Ettori ◽  
M. Roncarelli ◽  
M. Angelinelli ◽  
M. Brüggen ◽  
...  

Detecting the thermal and non-thermal emission from the shocked cosmic gas surrounding large-scale structures represents a challenge for observations, as well as a unique window into the physics of the warm-hot intergalactic medium. In this work, we present synthetic radio and X-ray surveys of large cosmological simulations in order to assess the chances of jointly detecting the cosmic web in both frequency ranges. We then propose best observing strategies tailored for existing (LOFAR, MWA, and XMM) or future instruments (SKA-LOW and SKA-MID, Athena, and eROSITA). We find that the most promising targets are the extreme peripheries of galaxy clusters in an early merging stage, where the merger causes the fast compression of warm-hot gas onto the virial region. By taking advantage of a detection in the radio band, future deep X-ray observations will probe this gas in emission, and help us to study plasma conditions in the dynamic warm-hot intergalactic medium with unprecedented detail.


1998 ◽  
Vol 188 ◽  
pp. 61-64
Author(s):  
Trevor J. Ponman ◽  
Alexis Finoguenov

It is clear that there is an important interplay between galaxies and the group environment. At the velocity dispersions (~ 100 km s−1) characteristic of groups, the galaxies interact strongly, leading to triggering of star formation, and galaxy merging. We can expect to see evidence of such processes through differences in the properties of galaxies in groups compared to field galaxies. Conversely, the galaxies affect their environment, as is apparent from the presence of heavy elements in the hot intergalactic medium (IGM) in groups, which emit characteristic X-ray lines.


2009 ◽  
Vol 5 (H15) ◽  
pp. 89-90
Author(s):  
Takaya Ohashi

X-ray observations reveal extended halos around early-type galaxies which enable us to trace the dark matter distribution around the galaxies (see Mathews and Brighenti 2003 for a review). X-ray luminosities, LX of massive early-type galaxies are 1040−1042 erg s−1 in 0.3–2 keV. The correlation plot between LX and B-band luminosity LB shows a large scatter in the sense that LX varies by 2 orders of magnitudes for the same LB, in the brightest end (log LB ≳ 10.5). The amount of the X-ray hot gas in early-type galaxies is typically a few % of the stellar mass, in contrast to clusters of galaxies which hold ~5 times more massive gas than stars. Matsushita (2001) showed that X-ray luminous galaxies are characterized by extended X-ray halo with a few tens of re, similar to the scale of galaxy groups, so the presence of group-size potentials would be strongly linked with the problem of large LX scatter.


2020 ◽  
Vol 495 (1) ◽  
pp. L139-L143
Author(s):  
L J Townsend ◽  
P A Charles

ABSTRACT We present evidence for a simple linear relationship between the orbital period and superorbital period in ultra-luminous X-ray (ULX) pulsars, akin to what is seen in the population of disc-fed neutron star supergiant X-ray binary and Be/X-ray binary systems. We argue that the most likely cause of this relationship is the modulation of precessing hotspots or density waves in an accretion or circumstellar disc by the binary motion of the system, implying a physical link between ULX pulsars and high-mass X-ray binary (HMXB) pulsars. This hypothesis is supported by recent studies of Galactic and Magellanic Cloud HMXBs accreting at super-Eddington rates, and the position of ULX pulsars on the spin period–orbital period diagram of HMXBs. An interesting secondary relationship discovered in this work is the apparent connection between disc-fed HMXBs, ULXs, and a seemingly unrelated group of early-type binaries showing so-called double-periodic variability. We suggest that these systems are good candidates to be the direct progenitors of Be/X-ray binaries.


1974 ◽  
Vol 58 ◽  
pp. 93-108
Author(s):  
G. R. Burbidge

An up-dated review is given of the evidence for the presence of intergalactic matter and radiation in the Universe. It is concluded that the only important constituents which may make a sizable contribution to the total mass-energy are intergalactic gas and condensed objects with a very high mass-to-light ratio. If the QSOs are not at cosmological distances, cold atomic hydrogen may still be the most important constituent and may contribute much more mass than do the galaxies. The X-ray observations still do not unambiguously show that very hot gas is present, though it is very likely on general grounds that some hot gas is present in clusters of galaxies.The question of whether or not large amounts of matter, enough to close the Universe, are present, remains unsettled. From the theoretical standpoint the answer depends almost completely on the approach taken to the problem of galaxy formation and to the cosmological model which is favoured.


2018 ◽  
Vol 14 (S342) ◽  
pp. 97-100
Author(s):  
Silvia Pellegrini ◽  
Luca Ciotti ◽  
Andrea Negri ◽  
Jeremiah P. Ostriker

AbstractWe present the results of two-dimensional, grid-type hydrodynamical simulations, with parsec-scale central resolution, for the evolution of the hot gas in isolated early-type galaxies (ETGs). The simulations include a physically self-consistent treatment of the mechanical (from winds) and radiative AGN feedback, and were run for a large set of realistic galaxy models. AGN feedback proves to be very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping the star formation at a low level, and the central black hole mass on observed scaling relations. A comparison with recent determinations of the X-ray properties of ETGs in the local universe shows that, at later epochs, AGN feedback does not dramatically alter the gas content originating in stellar recycled material. Thus, the present-day X-ray luminosity is not a robust diagnostic of the impact of AGN activity, within a scenario where the hot gas mostly originates from the stellar population.


1987 ◽  
Vol 117 ◽  
pp. 165-181 ◽  
Author(s):  
C. R. Canizares

X-Ray observations of galaxies and clusters can, in principle, trace the binding mass in these systems. I review some of the relevant work. The mass of hot gas in rich clusters is comparable to or exceeds the mass in visible stars. This proportion of gas to stellar material could be universal, although there is no direct evidence that it must be. Studies of the distribution of the gas indicate the presence of dark matter in the envelopes of some dominant cluster galaxies, most notably M87. The M/LB values increase with radius to values of ∼ 400–600 M⊙/L⊙. Uncertainties in the temperature distribution of the gas have hampered these analyses and have made it difficult to draw definitive conclusions about the binding mass in clusters. Recent work on Coma suggests that M/L is falling with radius and the total M/L for the cluster may be as low as ∼ 120. Studies of early type galaxies show that many contain hot gas with temperatures ∼107 K. There is evidence for the existence of cooling flows, and gravity rather than supernovae may be the dominant source of energy that heats the gas. The deduced binding masses for several bright galaxies are uncertain because of the unknown temperature profiles. Values of M/LB ≃ 20–30 within ∼ 30–40 kpc are indicated if one assumes isothermality, but values as low as 5 and as high as 100 are allowed. With better models one may be able to reduce these uncertainties.


2007 ◽  
Vol 3 (S244) ◽  
pp. 374-375
Author(s):  
Leila C. Powell ◽  
Scott T. Kay ◽  
Arif Babul ◽  
Andisheh Mahdavi

AbstractVarious differences in galaxy cluster properties derived from X-ray and weak lensing observations have been highlighted in the literature. One such difference is the observation of mass concentrations in lensing maps which have no X-ray counterparts (e.g. Jee, White, Ford et al. 2005). We investigate this issue by identifying substructures in maps of projected total mass (analogous to weak lensing mass reconstructions) and maps of projected X-ray surface brightness for three simulated clusters. We then compare the 2D mass substructures with both 3D subhalo data and the 2D X-ray substructures. Here we present preliminary results from the first comparison, where we have assessed the impact of projecting the data on subhalo identification.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 760-763
Author(s):  
Dominique Eckert

AbstractAbell 2744 was the first HFF cluster completed. It displays a fascinating complexity in its distribution of dark and luminous matter, which led to its nickname of the Pandora cluster. In late 2014 we obtained a deep (110 ks) observation of this cluster with XMM-Newton, with the aim of making a detailed comparison between the optical, X-ray and lensing properties of this system. The new X-ray observation unveiled the presence of three hot gas filaments extending on scales of several Mpc and connected to the cluster core. The X-ray structures coincide spatially with the distribution of galaxies and dark matter and provide strong evidence for the existence of the elusive warm-hot intergalactic medium (WHIM). The new observation also reveals the complexity of the thermodynamic structure of the cluster core and a probable shock front associated with the radio relic located 1 Mpc NW of the cluster core.


Sign in / Sign up

Export Citation Format

Share Document