Transonic Flow Calculations Through Plane Turbine Cascades Using The Navier-Stokes Equations

Author(s):  
F. Martelli ◽  
A. Boretti
Author(s):  
Kazuomi Yamamoto ◽  
Yoshimichi Tanida

A self-excited oscillation of transonic flow in a simplified cascade model was investigated experimentally, theoretically and numerically. The measurements of the shock wave and wake motions, and unsteady static pressure field predict a closed loop mechanism, in which the pressure disturbance, that is generated by the oscillation of boundary layer separation, propagates upstream in the main flow and forces the shock wave to oscillate, and then the shock oscillation disturbs the boundary layer separation again. A one-dimensional analysis confirms that the self-excited oscillation occurs in the proposed mechanism. Finally, a numerical simulation of the Navier-Stokes equations reveals the unsteady flow structure of the reversed flow region around the trailing edge, which induces the large flow separation to bring about the anti-phase oscillation.


Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Alexander Kuzmin

AbstractTransonic flow past a Whitcomb airfoil and two modifications of it at Reynolds numbers of the order of ten millions is studied. The numerical modeling is based on the system of Reynolds-averaged Navier-Stokes equations. The flow simulations show that variations of the lift coefficient versus the angle of attack become more abrupt with decreasing curvature of the airfoil in the midchord region. This is caused by an instability of closely spaced local supersonic regions on the upper surface of the airfoil.


1983 ◽  
Vol 50 (2) ◽  
pp. 265-269
Author(s):  
D. Nixon

The perturbation theory for transonic flow is further developed for solutions of the Navier-Stokes equations in two dimensions or for experimental results. The strained coordinate technique is used to treat changes in location of any shock waves or large gradients.


2003 ◽  
Vol 125 (2) ◽  
pp. 308-314 ◽  
Author(s):  
C. Cravero ◽  
A. Satta

Turbomachinery flows can nowadays be investigated using several numerical techniques to solve the full set of Navier-Stokes equations; nevertheless the accuracy in the computation of losses is still a challenging topic. The paper describes a time-marching method developed by the authors for the integration of the Reynolds averaged Navier-Stokes equations in turbomachinery cascades. The attention is focused on turbine sections and the computed aerodynamic performances (outlet flow angle, profile loss, etc.,) are compared to experimental data and/or correlations. The need for this kind of CFD analysis tools is stressed for the substitution of standard correlations when a new blade is designed.


2018 ◽  
Vol 844 ◽  
pp. 746-765 ◽  
Author(s):  
A. F. Aljohani ◽  
J. S. B. Gajjar

The problem of transonic flow past an array of micro-electro-mechanical-type (MEMS-type) heating elements placed on a flat surface is investigated using the triple-deck theory. The compressible Navier–Stokes equations supplemented by the energy equation are considered for large Reynolds numbers. The triple-deck problem is formulated with the aid of the method of matched expansions. The resulting nonlinear viscous lower deck problem, coupled with the upper deck problem governed by the nonlinear Kármán–Guderley equation, is solved using a numerical method based on Chebyshev collocation and finite differences. Our results show the differences in subsonic and supersonic flow behaviour over heated elements. The results indicate the possibility of using the elements to favourably control the transonic flow field.


1990 ◽  
Vol 112 (4) ◽  
pp. 723-731 ◽  
Author(s):  
K. Yamamoto ◽  
Y. Tanida

A self-excited oscillation of transonic flow in a simplified cascade model was investigated experimentally, theoretically and numerically. The measurements of the shock wave and wake motions, and the unsteady static pressure field predict a closed-loop mechanism, in which the pressure disturbance that is generated by the oscillation of boundary layer separation propagates upstream in the main flow and forces the shock wave to oscillate, and then the shock oscillation disturbs the boundary layer separation again. A one-dimensional analysis confirms that the self-excited oscillation occurs in the proposed mechanism. Finally, a numerical simulation of the Navier–Stokes equations reveals the unsteady flow structure of the reversed flow region around the trailing edge, which induces the large flow separation to bring about the antiphase oscillation.


1984 ◽  
Vol 106 (2) ◽  
pp. 383-390 ◽  
Author(s):  
S. J. Shamroth ◽  
H. McDonald ◽  
W. R. Briley

A numerical solution procedure for the ensemble-averaged, compressible, time-dependent Navier-Stokes equations is applied to predict the flow about a cascade of airfoils operating in the transonic flow regime. The equations are solved by the consistently split, linearized block implicit (LBI) method of Briley and McDonald. Boundary conditions are set so as to specify upstream total pressure and downstream static pressure. Turbulence is modeled by a mixing length model. Predictions are made for flow through a compressor cascade configuration. The method yields converged solutions within a relatively small number of time steps ( ≈ 150), which give good comparisons with experimental data.


Sign in / Sign up

Export Citation Format

Share Document