Survival of Pathogens and Parasites During the Anaerobic Digestion of Organic Wastes

Author(s):  
A. El-Bassel ◽  
H. Gamal-El-Din ◽  
I. M. Ghazi ◽  
O. Soodi
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3411
Author(s):  
Clara Fernando-Foncillas ◽  
Maria M. Estevez ◽  
Hinrich Uellendahl ◽  
Cristiano Varrone

Wastewater and sewage sludge contain organic matter that can be valorized through conversion into energy and/or green chemicals. Moreover, resource recovery from these wastes has become the new focus of wastewater management, to develop more sustainable processes in a circular economy approach. The aim of this review was to analyze current sewage sludge management systems in Scandinavia with respect to resource recovery, in combination with other organic wastes. As anaerobic digestion (AD) was found to be the common sludge treatment approach in Scandinavia, different available organic municipal and industrial wastes were identified and compared, to evaluate the potential for expanding the resource recovery by anaerobic co-digestion. Additionally, a full-scale case study of co-digestion, as strategy for optimization of the anaerobic digestion treatment, was presented for each country, together with advanced biorefinery approaches to wastewater treatment and resource recovery.


2015 ◽  
Vol 2 (4) ◽  
pp. 136-144 ◽  
Author(s):  
Jessica L. Linville ◽  
Yanwen Shen ◽  
May M. Wu ◽  
Meltem Urgun-Demirtas

2021 ◽  
Vol 3 ◽  
Author(s):  
Eudald Casals ◽  
Raquel Barrena ◽  
Edgar Gonzalez ◽  
Xavier Font ◽  
Antoni Sánchez ◽  
...  

The addition of magnetic nanoparticles to batch anaerobic digestion was first reported in 2014. Afterwards, the number of works dealing with this subject has been increasing year by year. The discovery of the enhancement of anaerobic digestion by adding iron-based nanoparticles has created a multidisciplinary emerging research field. As a consequence, in the last years, great efforts have been made to understand the enhancement mechanisms by which magnetic nanoparticles (NPs) addition enhances the anaerobic digestion process of numerous organic wastes. Some hypotheses point to the dissolution of iron as essential iron for anaerobic digestion development, and the state of oxidation of iron NPs that can reduce organic matter to methane. The evolution and trends of this novel topic are discussed in this manuscript. Perspectives on the needed works on this topic are also presented.


2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1224
Author(s):  
Nwabunwanne Nwokolo ◽  
Patrick Mukumba ◽  
KeChrist Obileke ◽  
Matthew Enebe

Anaerobic digestion is an efficient technology for a sustainable conversion of various organic wastes such as animal manure, municipal solid waste, agricultural residues and industrial waste into biogas. This technology offers a unique set of benefits, some of which include a good waste management technique, enhancement in the ecology of rural areas, improvement in health through a decrease of pathogens and optimization of the energy consumption of communities. The biogas produced through anaerobic digestion varies in composition, but it consists mainly of carbon dioxide methane together with a low quantity of trace gases. The variation in biogas composition are dependent on some factors namely the substrate type being digested, pH, operating temperature, organic loading rate, hydraulic retention time and digester design. However, the type of substrate used is of greater interest due to the direct dependency of microorganism activities on the nutritional composition of the substrate. Therefore, the aim of this review study is to provide a detailed analysis of the various types of organic wastes that have been used as a substrate for the sustainable production of biogas. Biogas formation from various substrates reported in the literature were investigated, an analysis and characterization of these substrates provided the pro and cons associated with each substrate. The findings obtained showed that the methane yield for all animal manure varied from 157 to 500 mL/gVS with goat and pig manure superseding the other animal manure whereas lignocellulose biomass varied from 160 to 212 mL/gVS. In addition, organic municipal solid waste and industrial waste showed methane yield in the ranges of 143–516 mL/gVS and 25–429 mL/gVS respectively. These variations in methane yield are primarily attributed to the nutritional composition of the various substrates.


1988 ◽  
Vol 26 (4) ◽  
pp. 275-284 ◽  
Author(s):  
S. Kimchie ◽  
S. Tarre ◽  
E. Lumbroso ◽  
M. Green ◽  
G. Shelef

Sign in / Sign up

Export Citation Format

Share Document