scholarly journals Opportunity of Biogas Production from Solid Organic Wastes through Anaerobic Digestion

2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.


2011 ◽  
Vol 29 (11) ◽  
pp. 1171-1176 ◽  
Author(s):  
Thomas Schmidt

Oil production from Jatropha curcas L. seeds generates large amounts of Jatropha press cake (JPC) which can be utilized as a substrate for biogas production. The objective of this work was to investigate anaerobic mono-digestion of JPC and the effects of an iron additive (IA) on gas quality and process stability during the increase of the organic loading rate (OLR). With the increase of the OLR from 1.3 to 3.2 gVS L−1 day−1, the biogas yield in the reference reactor (RR) without IA decreased from 512 to 194 LN kgVS−1 and the CH4 concentration decreased from 69.3 to 44.4%. In the iron additive reactor (IAR), the biogas yield decreased from 530 to 462 LN kgVS−1 and the CH4 concentration decreased from 69.4 to 61.1%. The H2S concentration in the biogas was reduced by addition of the IA to values below 258 ppm in the IAR while H2S concentration in the RR increased and exceeded the detection limit of 5000 ppm. The acid capacity (AC) in the RR increased to more than 20 g L−1, indicating an accumulation of organic acids caused by process instability. AC values in the IAR remained stable at values below 5 g L−1. The results demonstrate that JPC can be used as sole substrate for anaerobic digestion up to an OLR of 2.4 gVS l−1 day−1. The addition of IA has effectively decreased the H2S content in the biogas and has improved the stability of the anaerobic process and the biogas quality.


2014 ◽  
Vol 21 (3) ◽  
pp. 447-464 ◽  
Author(s):  
Jolanta Bohdziewicz ◽  
Mariusz Kuglarz ◽  
Klaudiusz Grűbel

Abstract The article presents the results of determining the most appropriate conditions of microwave sludge pre-treatment (500-1200 W), prior to its anaerobic digestion in a continuous mode. The assessment of the pre-treatment conditions (microwave power, sludge temperature after pre-treatment) was based on: the release of organic (COD, protein) and inorganic (NH4+, PO43-) substances into liquid, the quantity of methane produced, sludge higienisation and the susceptibility of the pre-treated sludge to dewatering. The power of the microwaves applied did not play significant role on the pre-treatment effectiveness. Taking into account the fact that sludge pre-treatment by microwave irradiation requires the delivery of energy, the pre-treatment by microwaves of higher power (1200 W) and resulting in sludge temperature of 70°C was recommended for further experiments. Sludge pre-treatment by means of microwave irradiation as a pre-treatment step influenced the effectiveness of the subsequent anaerobic digestion, conducted in continuous conditions, in a positive way. The largest amount of biogas was obtained for HRT in the range of 15-20 days. As compared to the sludge which did not undergo pre-treatment, daily biogas production and biogas yield increased by 18-41% and 13-35% respectively. The combination of microwave pre-treatment and mesophilic anaerobic digestion ensured the elimination of pathogens (Salmonella spp., Escherichia coli).


Author(s):  
Oludare Johnson Odejobi ◽  
Oluwagbenga Abiola Olawuni ◽  
Samuel Olatunde Dahunsi ◽  
Akinbiyi Ayomikusibe John

The present study evaluates the influence of kitchen wastes on animal manures via anaerobic digestion for biogas production. The digestion was done using a digester with a capacity of 5L. The digester was loaded with the slurry of wastes prepared by mixing the wastes with water in ratio 1:1, and operated at mesophilic temperature of 37 ± 2°C for 30 days. The co-digestion of kitchen wastes with poultry droppings produced highest biogas yield (814.0 ml/kg VS fed) and the least (365.84 ml/kg VS fed) was from the co-digestion of kitchen wastes with the mixture of poultry droppings and cow dung. Composition analysis of the biogas showed the highest methane content (63.1%) from kitchen wastes and the lowest (56.2%) from co-digestion of kitchen wastes with poultry droppings. The pH range for optimum biogas production varied between 5.25 and 7.5. The study concluded that biogas yield from co-digestion of substrates, among other factors depends on the composition of participating substrates.


2012 ◽  
Vol 253-255 ◽  
pp. 897-902
Author(s):  
Li Jun Shi ◽  
Miao Huang ◽  
Wei Yu Zhang ◽  
Hui Fen Liu

In this paper anaerobic digestion of dairy manure and straw was conducted to produce biogas. Under the conditions of C/N=25-30 and T=36°C, five kinds of dry matter concentration of 20%, 15%, 10%, 5% and 2.5% were tested to investigate the effect of dry matter concentration on anaerobic digestion. The result showed that first 30 days was the biogas production peak phase and VFA concentrations in the leachate were also high during the same period. When dry matter concentration increased, biogas production appeared larger fluctuation, and alkalinity and NH4+-N concentration in the leachate also increased with higher organic loading rate. Among five kinds of dry matter concentration, 10% was more suitable for anaerobic digestion to produce biogas with total biogas production amount of 4710 mL after 30 days and volumetric biogas yield of 0.313 m3•m-3•d-1. These results could provide instructive meaning to the engineering application of dry anaerobic digestion.


2021 ◽  
Vol 11 (10) ◽  
pp. 4452
Author(s):  
Pranshu Bhatia ◽  
Masaaki Fujiwara ◽  
Maria Cecilia D. Salangsang ◽  
Jun Qian ◽  
Xin Liu ◽  
...  

In this study, semi-continuous anaerobic digestion of lignin-rich steam-exploded Ludwigia grandiflora (Lignin = 25.22% ± 4.6% total solids) was performed to understand better the effect of steam explosion on the substrate solubilisation and inhibitors formation during the process. Steam explosion pretreatment was performed at 180 °C for 30 min at a severity factor of 3.8 to enhance the biogas yield of the lignocellulosic biomass. The semi-continuous anaerobic digestion was performed in a continuously stirred tank reactor for 98 days at an initial hydraulic retention time of 30 days and an organic loading rate of 0.9 g-VS L−1day−1. The performed steam explosion pretreatment caused biomass solubilisation, resulting in enhanced biogas production during the process. During the anaerobic digestion process, the average biogas yield was 265 mL g-VS−1, and the pH throughout the operation was in the optimum range of 6.5–8.2. Due to fluctuations in the biogas yield, the hydraulic retention time and organic loading rate were changed on day 42 (50 days and 0.5 g-VS L−1day−1) and on day 49 (40 days and 0.7 g-VS L−1day−1), and 1 M of NaOH was added to the liquid fraction of the steam-exploded L. grandiflora during the latter part of the operation to maintain the stability in the reactor. Therefore, the steam explosion pretreatment helped in the degradation of L. grandiflora by breaking the lignocellulose structure. In addition, changes in the operating conditions of the anaerobic digestion led to an increase in the biogas production towards the end of the process, leading to the stability in the CSTR.


2016 ◽  
Vol 36 (01) ◽  
pp. 79
Author(s):  
Darwin Darwin ◽  
Yusmanizar Yusmanizar ◽  
Muhammad Ilham ◽  
Afrizal Fazil ◽  
Satria Purwanto ◽  
...  

Thermal pre-treatment was given on corn stover in the purpose of breaking the lignin content; thus, it may help anaerobic microorganisms to convert polymer including cellulose and hemicelluloses into biogas. This study aimed to investigate the effects of thermal pre-treatment on corn stover in anaerobic digestion process related to the production of biogas as well as digestion process efficiency. This research was carried out by utilizing batch reactors where the temperature was maintained at mesophilic conditions above room temperature (33 ± 2 oC). Based on the result, it was known that thermal pre-treatment given on the corn stover may enhance anaerobic digestion process for biogas production at the first 10 days. This condition reduced the time of lag phase during anaerobic digestion. The biogas production of corn stover given thermal pre-treatment was slow at 26 days where their average total production were 12,412.5 mL,12,310 mL at 15 and 25 minutes thermal pre-treatment, respectively while biogas production of non pre-treated corn stover was 12,557 mL. The highest daily biogas production was accomplished by corn stover that was given thermal pre-treatment at 25 minutes (915 mL). Corn stover given with 15 minutes thermal pre-treatment also generated higher daily biogas production at day 9 (772.5 mL) compared with corn stover that was not pre-treated (405 mL). This research also revealed that corn stover given thermal pre-treatment reached higher biogas yield compared with non pre-treated corn stover where their biogas yield were 670.39, 690.65 mL/g volatile solids added at 15 and 25 minutes thermal pre- treatment respectively, and 456.37 mL/g volatile solids added of non pre-treated corn stover.Keywords: Thermal pre-treatment, corn stover, anaerobic digestion, biogas ABSTRAKThermal pre-treatment diberikan pada limbah tanaman jagung dengan tujuan untuk memecahkan kandungan lignin yang terdapat pada limbah tanaman jagung sehingga memudahkan mikroorganisme anaerobik untuk mengkonversi polimer yang berupa selulosa dan hemiselulosa menjadi biogas. Tujuan dari penelitian ini adalah untuk melakukan kajian mengenai penerapan thermal pre-treatment pada limbah tanaman jagung terhadap proses anaerobik digesi yang meliputi efisiensi proses digesi dan produksi biogas yang dihasilkan. Penelitian ini dilakukan dengan menggunakan reaktor tipe batch yang suhunya dipertahankan pada kondisi mesophilic atau di atas rata-rata suhu kamar (33 ± 2 oC). Hasil penelitian diperoleh bahwa thermal pre-treatment yang diberikan pada limbah tanaman jagung mampu mempercepat proses produksi biogas pada 10 hari pertama sehingga dapat mengurangi lag-phase pada proses anaerobik digesi. Limbah tanaman jagung yang diberikan thermal pre-treatment mengalami perlambatan produksi biogas pada hari ke 26 dengan rata-rata total produksi 12.412,5 mL untuk limbah tanaman jagung yang diberikan thermal pre- treatment selama 15 menit, dan 12.310 mL untuk limbah tanaman jagung yang diberikan thermal pre-treatment selama 25 menit, sedangkan limbah tanaman jagung yang tidak diberikan pre-treatment menghasilkan produksi biogas sebesar 12.557 mL pada hari ke 26. Produksi biogas harian tertinggi terjadi pada substrat yang diberikan thermal pre-treatment 25 menit, dengan produksi biogas tertinggi pada hari ke 9 dengan rata-rata produksi sebesar 915 mL. Substrat yang diberikan thermal pre-treatment 15 menit juga memproduksi biogas jauh lebih tinggi (772,5 mL) pada hari ke 9 jika dibandingkan dengan substrat tanpa diberikan pre-treatment yang hanya memproduksi biogas sebesar 405 mL. Data hasil penelitian menunjukkan bahwa limbah tanaman jagung yang diberikan thermal pre-treatment memperoleh biogas yield lebih tinggi dari pada yang tidak diberikan pre-treatment dimana 670,39 mL/g volatile solids untuk thermal pre- treatment 15 menit, 690,65 mL/g volatile solids untuk thermal pre-treatment 25 menit dan 456,37 mL/g volatile solids untuk limbah tanaman jagung yang tidak diberikan pre-treatment.Kata kunci: Thermal pre-treatment, limbah tanaman jagung, anaerobik digesi, biogas


2021 ◽  
Vol 7 (3) ◽  
pp. 224-230
Author(s):  
Mtamabari Simeon Torbira ◽  
Ebigenibo Genuine Saturday

A modified fixed dome digester with stirring mechanism has been designed and constructed and used for the anaerobic digestion of cow dung slurry at 5%-7% Total solid (TS) concentration within the mesophylic temperature range. The quality of biogas gas produced was between 54%-69% methane (CH4) content. The Carbon to Nitrogen ratio (C: N) varied between 35:1 - 45:1. Total biogas yield obtained over the detention period was about 261 L. The maximum and minimum temperatures recorded over the 95 days period was 32oC and 25 oC respectively. The volume of biogas yield, Vb (m3) was observed to increase with the percentage total solid, PTS (%). The details of the design and construction of the biogas digester plant and its cost are reported. The performance of the plant was very satisfactory. Investigation into the anaerobic digestion revealed that cow dung has great potentials for generation of biogas.


2021 ◽  
Author(s):  
Venkateshkumar R ◽  
Shanmugam S ◽  
Veerappan AR

Abstract Cow dung is generally used as the feedstock material for the anaerobic digestion to produce biogas. A selection of alternate biomass material is needed to reduce the consumption or to eliminate the use of cow dung. Recently, cottonseed hull has been considered as the primary substrate to produce biogas. In this paper, the effect of biogas production on anaerobic co-digestion of cow dung with pre-treated cottonseed hull using different concentrations of sulfuric acid, hydrochloric acid, hydrogen peroxide, and acetic acid is investigated. Sodium hydroxide and calcium hydroxide are used at different concentrations for pre-treatment of cottonseed hull. The enhancement of biogas production from the batch reactors at mesophilic temperature (35 ± 2 ℃) is observed for mono- and co-digestion of cow dung with treated cottonseed hull. Maximum biogas yield is achieved for the treated cottonseed hull at 6% sodium hydroxide during mono digestion and at 6% calcium hydroxide during co-digestion.


Sign in / Sign up

Export Citation Format

Share Document