Finite Element Analysis of Coupled Deformation and Fluid Flow in Porous Media

1982 ◽  
pp. 203-227
Author(s):  
Ranbir S. Sandhu

2010 ◽  
Vol 81 (1) ◽  
pp. 76-91 ◽  
Author(s):  
Javier L. Mroginski ◽  
H.Ariel Di Rado ◽  
Pablo A. Beneyto ◽  
Armando M. Awruch




Author(s):  
Ik Joong Kim ◽  
Min Chul Kim ◽  
Gyu Ho Jang ◽  
Dae Hee Jeong ◽  
Oak Sug Kim ◽  
...  

Reactor coolant pump (RCP) is designed for the heat transfer of heat which is generated from reactor vessel to steam generators by circulating the coolant water. RCP is the only rotating equipment in the nuclear steam supply system (NSSS). Therefore, the problem of vibration has arisen caused by the hydraulic forces of the working fluid. These forces can drastically alter the critical speeds and stability characteristics and can act as significant destabilizing forces. So, vibration evaluation of RCP has been considered as a very important issue [1]. Among them, unbalance response caused by weight of unbalancing of rotating shaft could have serious effects on the entire rotor system. Thus, precise unbalance response spectrum analyses are required. In general, in order to evaluate the unbalance response characteristics for centrifugal pump, finite element analysis was performed according to the ISO 1940-1 standard. However, finite element analysis according to the ISO 1940-1 standard does not considering fluid flow effect. So, finite element analysis result and experimental results may be some differences. Vibration characteristics of RCP has affected by fluid flow effect induced from working fluid. Therefore, in order to understand vibration characteristics for the RCP shaft assembly considered in actual operating condition, rotor dynamic analysis should be performed considering the fluid flow effect. In this research, owing to accurately evaluate the vibration characteristics for the RCP considering hydro forces due to the fluid flow, we measured the bearing force and moment take into account the fluid-induced force. And then response spectrum analysis of RCP shaft assembly was performed considering fluid induced bearing radial forces which are measured values. Lastly, evaluate the vibration characteristics considering effect of fluid flow according to the number of revolution.





2020 ◽  
Vol 43 (1) ◽  
pp. 13-22
Author(s):  
Hai-Bang Ly ◽  
Hoang-Long Nguyen ◽  
Minh-Ngoc Do

Understanding fluid flow in fractured porous media is of great importance in the fields of civil engineering in general or in soil science particular. This study is devoted to the development and validation of a numerical tool based on the use of the finite element method. To this aim, the problem of fluid flow in fractured porous media is considered as a problem of coupling free fluid and fluid flow in porous media or coupling of the Stokes and Darcy equations. The strong formulation of the problem is constructed, highlighting the condition at the free surface between the Stokes and Darcy regions, following by the variational formulation and numerical integration using the finite element method. Besides, the analytical solutions of the problem are constructed and compared with the numerical solutions given by the finite element approach. Both local properties and macroscopic responses of the two solutions are in excellent agreement, on condition that the porous media are sufficiently discretized by a certain level of finesse. The developed finite element tool of this study could pave the way to investigate many interesting flow problems in the field of soil science.



Sign in / Sign up

Export Citation Format

Share Document