Specific Cleavage at Lys-147/Gly-148 in the Serine Protease Domain of Human Factor IXaβ by Plasmin: Effect on Catalytic Efficiency and Factor Villa Binding

2001 ◽  
pp. 965-966
Author(s):  
Amy E. Schmidt ◽  
S. Paul Bajaj
2003 ◽  
Vol 89 (02) ◽  
pp. 382-392 ◽  
Author(s):  
Ronald Aimes ◽  
Karine Regazzoni ◽  
James Quigley

SummaryMammalian urokinase-type plasminogen activator (uPA) is produced as a stable single polypeptide chain zymogen and requires a distinct proteolytic cleavage to become an active, two-chain enzyme. In contrast, chicken uPA, both native and recombinant, is found predominantly as a two-chain, active enzyme even in the absence of plasmin, a physiological activator. Here we show that the proclivity to autoactivate is not a unique property of the chicken uPA catalytic domain but requires sequences distinct from and independent of the serine protease domain. Human/chicken chimeric uPA molecules and point mutants were used to determine the structural requirements for uPA autoactivation versus zymogen stability. The amino terminal fragment of chicken uPA engineered onto the human uPA molecule can induce the autoactivation of the human uPA. In fact, the first twenty residues of the chicken uPA are necessary and sufficient to induce the autoactivation of chicken and human uPA. These results indicate that sequence motifs, distal to the active site, control the substrate specificity and catalytic efficiency of uPA activity in autolytic activation.


1992 ◽  
Vol 67 (01) ◽  
pp. 095-100 ◽  
Author(s):  
Paul J Declerck ◽  
Leen Van Keer ◽  
Maria Verstreken ◽  
Désiré Collen

SummaryAn enzyme-linked immunosorbent assay (ELISA) for quantitation of natural and recombinant plasminogen activators containing the serine protease domain (B-chain) of urokinase-type plasminogen activator (u-PA) was developed, based on two murine monoclonal antibodies, MA-4D1E8 and MA-2L3, raised against u-PA and reacting with non-overlapping epitopes in the B-chain. MA-4D1E8 was coated on microtiter plates and bound antigen was quantitated with MA-2L3 conjugated with horseradish peroxidase. The intra-assay, inter-assay and inter-dilution coefficients of variation of the assay were 6%, 15% and 9%, respectively. Using recombinant single-chain u-PA (rscu-PA) as a standard, the u-PA-related antigen level in normal human plasma was 1.4 ± 0.6 ng/ml (mean ± SD, n = 27).The ELISA recognized the following compounds with comparable sensitivity: intact scu-PA (amino acids, AA, 1 to 411), scu-PA-32k (AA 144 to 411), a truncated (thrombin-derived) scu-PA comprising A A 157 to 411, and chimeric t-PA/u-PA molecules including t-PA(AA1-263)/scu-PA(AA144-411), t-PA(AA1-274)/scu-PA(AA138-411) and t-PA(AA87-274)/scu-PA(AA138-411). Conversion of single-chain to two-chain forms of u-PA or inhibition of active two-chain forms with plasminogen activator inhibitor-1 or with the active site serine inhibitor phenyl-methyl-sulfonyl fluoride, did not alter the reactivity in the assay. In contrast, inactivation with α2-antiplasmin or with the active site histidine inhibitor Glu-Gly-Arg-CH2Cl resulted in a 3- to 5-fold reduction of the reactivity. When purified scu-PA-32k was added to pooled normal human plasma at final concentrations ranging from 20 to 1,000 ng/ml, recoveries in the ELISA were between 84 and 110%.The assay was successfully applied for the quantitation of pharmacological levels of scu-PA and t-PA(AA87_274)/scu-PA(AA138-411) in plasma during experimental thrombolysis in baboons.Thus the present ELISA, which is specifically dependent on the presence of the serine protease part of u-PA, is useful for measurement of a wide variety of variants and chimeras of u-PA which are presently being developed for improved thrombolytic therapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nis V. Nielsen ◽  
Elfie Roedel ◽  
Dipankar Manna ◽  
Michael Etscheid ◽  
Jens Preben Morth ◽  
...  

AbstractFactor VII (FVII) activating protease (FSAP) is a circulating serine protease. Human genetic studies, based on the Marburg I (MI) (Gly221Glu, chymotrypsin numbering system) polymorphism, implicate FSAP in the pathogenesis of many diseases. Here, we describe the molecular and functional changes caused by the Gly221Glu substitution in the 220 loop using recombinant proteins expressed in E. coli. The serine protease domain (SPD) of wild type (WT) FSAP displayed auto-catalytic activation whereas the MI isoform displayed very low autocatalytic activation and low proteolytic activity against the chromogenic substrate S-2288, Factor VII, tissue factor pathway inhibitor as well as pro-urokinase. Introduction of a thermolysin cleavage site in the activation position (Arg15Gln) led to cleavage of both WT- and MI-SPD and the resulting WT-SPD, but not the MI-SPD, was active. Mutating the Gly221 position to Asp, Gln and Leu led to a loss of activity whereas the Ala substitution was partially active. These results suggest a disturbance of the active site, or non-accessibility of the substrate to the active site in MI-SPD. With respect to regulation with metal ions, calcium, more than sodium, increased the enzymatic activity of WT-SPD. Thus, we describe a novel method for the production of recombinant FSAP-SPD to understand the role of the MI-single nucleotide polymorphism (SNP) in the regulation of its activity.


2005 ◽  
Vol 388 (3) ◽  
pp. 967-972 ◽  
Author(s):  
Susan WILSON ◽  
Brett GREER ◽  
John HOOPER ◽  
Andries ZIJLSTRA ◽  
Brian WALKER ◽  
...  

TMPRSS2 is a type II transmembrane-bound serine protease that has gained interest owing to its highly localized expression in the prostate and its overexpression in neoplastic prostate epithelium. Once activated, the serine protease domain of TMPRSS2 is released from the cell surface into the extracellular space. PAR (protease-activated receptor)-2 belongs to a family of G-protein-coupled receptors (PAR-1–4) that are activated by specific serine proteases, which are expressed in many normal and malignant cell types. Previous in vitro studies on prostate cancer cells suggest a role for PAR-2 in prostate cancer metastasis. A polyclonal anti-human TMPRSS2 antibody was generated against the TMPRSS2 serine protease domain. The antibody showed specific reactivity with recombinant expressed TMPRSS2, and so was used to extract and purify the cleaved active TMPRSS2 protease from prostate cancer cells. Reverse transcriptase PCR and Western blot analysis were used to show the expression of both TMPRSS2 and PAR-2 in the androgen-dependent LNCaP prostate cancer cell line. Treatment of LNCaP cells with the cellular immunopurified TMPRSS2 protease induced a transient increase in intracellular calcium, which is indicative of G-protein-coupled-receptor activation. This calcium mobilization was inhibited by cellular pre-treatment with a specific PAR-2 antagonist, but not with a PAR-1 antagonist; inhibition of the protease activity also failed to mobilize calcium, suggesting that TMPRSS2 is capable of cleaving and thereby activating the PAR-2 receptor. The calcium mobilization was also inhibited by cellular pre-treatment with suramin or 2-APB (2-aminoethoxydiphenyl borate), indicating that a G-protein pathway is involved and that subsequent calcium release is mainly from intracellular stores. The present study describes how TMPRSS2 may contribute to prostate tumour metastasis via the activation of PAR-2.


2007 ◽  
Vol 88 (5) ◽  
pp. 1620-1623 ◽  
Author(s):  
Xuejun Li ◽  
Claire Halpin ◽  
Martin D. Ryan

To study the proteolytic processing of the potato leafroll virus replicase proteins, the multidomain P1 protein with a c-myc epitope tag attached at the N terminus was expressed in insect cells by using the baculovirus system. Western blotting showed that P1 was cleaved at a site upstream of the serine protease domain, in addition to the cleavage site downstream of the protease domain. Mutational analysis showed that the serine protease domain within P1 was responsible for this cleavage. To characterize this novel cleavage site further, a portion of the P1 protein comprising the protease domain and the two cleavage sites was expressed in Escherichia coli. A similar cleavage event was observed in bacteria and was abolished when the P1 protease was inactivated by mutation. Peptide-sequencing studies indicated that this cleavage occurred at a Glu/Arg junction, separating the N-terminal 204 residues from the serine protease domain of P1.


Sign in / Sign up

Export Citation Format

Share Document