High Resolution Studies of Type III Solar Radio Bursts

1974 ◽  
pp. 225-226
Author(s):  
C. Chiuderi ◽  
R. Giachetti ◽  
C. Mercier ◽  
H. Rosenberg ◽  
C. Slottje
Solar Physics ◽  
2015 ◽  
Vol 290 (10) ◽  
pp. 2975-3004 ◽  
Author(s):  
M. J. Reiner ◽  
R. J. MacDowall

1974 ◽  
pp. 283-283
Author(s):  
V. V. Zaitsev ◽  
N. A. Mityakov ◽  
V. O. Rapoport

2002 ◽  
Vol 199 ◽  
pp. 488-489
Author(s):  
D. L. Jones

The GMRT represents a dramatic improvement in ground-based observing capabilities for low frequency radio astronomy. At sufficiently low frequencies, however, no ground-based facility will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lowest radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium.


1965 ◽  
Vol 18 (3) ◽  
pp. 283 ◽  
Author(s):  
UV Gopala Rao

The polarization of type III bursts was measured, using a swept.phase technique, at 40 and 60 Mc/s. The great majority of type III bursts show slight to moderate polarization. The results indicate a double structure for the type III burst-a sharp, intense, drifting feature with relatively strong polarization, and a diffuse background of longer duration with relatively weak or zero polarization.


1989 ◽  
Vol 104 (2) ◽  
pp. 185-189
Author(s):  
N. Copalswamy ◽  
M. R. Kundu

AbstractWe present recent results from meter-decameter imaging of several classes of solar radio bursts: Preflare activity in the form of type III bursts, correlated type IIIs from distant sources, and type II and moving type IV bursts associated with flares and CMEs.


1980 ◽  
Vol 86 ◽  
pp. 299-302
Author(s):  
T. Takakura

By the use of semi-analytical method, modeling of three kinds of type III solar radio bursts have been made. Many basic problems about the type III bursts and associated solar electrons have been solved showing some striking or unexpected results. If the fundamental radio emissions should be really observed as the normal type III bursts, the emission mechanism would not be the currently accepted one, i.e. the scattering of plasma waves by ions.


1980 ◽  
Vol 86 ◽  
pp. 387-400
Author(s):  
J.L. Steinberg

Space observations of solar radio bursts have provided the following information:– From a single spacecraft:Measurements within the burst source or close to it: fundamental and harmonic type III radio emission, the corresponding plasma waves and spectra of the exciting electrons.– From a spacecraft and the earth or from two spacecrafts:A better evaluation of the influence of the ionosphere on some ground-based observations.Measurements of the beaming of the emission which yield constraints on the radiation mechanism and/or the role of coronal propagation in determining the source size and directivity (type I and III's).Measurements of the differential time delay which yield for type III:At short (m- and dam-) wavelengths, some evidence of group delays,At long (hm- and km-) wavelengths one coordinate of the source.Complete (3-dimensional) localization of the source at long wavelengths and therefore maps of the heliosphere magnetic field and electron density as well as the source size and, in the future, its polarization.The results of these observations and their interpretation are reviewed and discussed.


Sign in / Sign up

Export Citation Format

Share Document