Electron Transport Pathways between Photosystem I (PSI) and Photosystem II (PSII)

Author(s):  
W. P. Williams
1988 ◽  
Vol 43 (11-12) ◽  
pp. 871-876 ◽  
Author(s):  
Imre Vass ◽  
Narendranath Mohanty ◽  
Sándor Demeter

Abstract The effect of photoinhibition on the primary (QA) and secondary (QB) quinone acceptors of photosystem I I was investigated in isolated spinach thylakoids by the methods of thermoluminescence and delayed luminescence. The amplitudes of the Q (at about 2 °C) and B (at about 30 °C) thermoluminescence bands which are associated with the recombination of the S2QA- and S2QB charge pairs, respectively, exhibited parallel decay courses during photoinhibitory treatment. Similarly, the amplitudes of the flash-induced delayed luminescence components ascribed to the recombination of S20A and S2OB charge pairs and having half life-times of about 3 s and 30 s, respectively, declined in parallel with the amplitudes of the corresponding Q and B thermoluminescence bands. The course of inhibition of thermoluminescence and delayed luminescence intensity was parallel with that of the rate of oxygen evolution. The peak positions of the B and Q thermoluminescence bands as well as the half life-times of the corresponding delayed luminescence components were not affected by photoinhibition. These results indicate that in isolated thylakoids neither the amount nor the stability of the reduced OB acceptor is preferentially decreased by photoinhibition. We conclude that either the primary target of photodamage is located before the O b binding site in the reaction center of photosystem II or QA and OB undergo simultaneous damage.


1984 ◽  
Vol 39 (5) ◽  
pp. 351-353 ◽  
Author(s):  
Stuart M. Ridley ◽  
Peter Horton

Diuron (DCMU) induces the photodestruction of pigments, which is the initial herbicidal symptom. As a working hypothesis, it is proposed that this symptom can only be produced when the herbicide dose is sufficiently high to inhibit not only photosystem II electron transport almost completely, but also inhibit (through over oxidation) the natural cyclic electron flow associated with photosystem I as well. Using freshly prepared chloroplasts, studies of DCMU-induced fluorescence changes, and dose responses for inhibition of electron transport, have been compared with a dose response for the photodestruction of pigments in chloroplasts during 24 h illumination. Photodestruction of pigments coincides with the inhibition of cyclic flow.


1980 ◽  
Vol 12 (3-4) ◽  
pp. 197-203 ◽  
Author(s):  
Rita Barr ◽  
Randa Melhem ◽  
Anne L. Lezotte ◽  
Frederick L. Crane

1982 ◽  
Vol 60 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Rungsit Suwanketnikom ◽  
Kriton K. Hatzios ◽  
Donald Penner ◽  
Duncan Bell

The effect of bentazon (3-isopropyl-1H-2,1,3-benzathiadiazin-(4)3H-one 2,2-dioxide) on various photochemical reactions of isolated spinach (Spinacea oleracea L.) chloroplasts was studied at concentrations 0, 5, 15, 45, and 135 μM. Bentazon at a concentration of 135 μM strongly inhibited uncoupled electron transport from water to ferricyanide or to methylviologen with inhibition percentages greater than 90%. Photosystem II mediated electron transport from water to oxidized diaminodurene, with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) blocking photosystem I, was also strongly inhibited by bentazon at 135 μM but less with lower concentrations of bentazon. Photosystem I mediated transfer of electrons from diaminodurene to methylviologen, with 3,4-dichlorophenyl-1,1-dimethylurea (DCMU) blocking photosystem II, was not inhibited by bentazon at any concentration examined. Transfer of electrons from catechol to methylviologen in hydroxylamine-treated chloroplasts was inhibited by bentazon, and the inhibition percentages were again concentration dependent. The data indicate that the site of bentazon inhibition of the photosynthetic electron transport is at the reducing side of photosystem II, between the primary electron acceptor Q and plastoquinone.


1982 ◽  
Vol 204 (3) ◽  
pp. 705-712 ◽  
Author(s):  
A C Stewart

1. Photosynthetic electron transport from water to lipophilic Photosystem II acceptors was stimulated 3-5-fold by high concentrations (greater than or equal to 1 M) of salts containing anions such as citrate, succinate and phosphate that are high in the Hofmeister series. 2. In trypsin-treated chloroplasts, K3Fe(CN)6 reduction insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea was strongly stimulated by high concentrations of potassium citrate, but there was much less stimulation of 2,6-dichloroindophenol reduction in Tris-treated chloroplasts supplied with 1,5-diphenylcarbazide as artificial donor. The results suggest that the main site of action of citrate was the O2-evolving complex of Photosystem II. 3. Photosystem I partial reactions were also stimulated by intermediate concentrations of citrate (up to 2-fold stimulation by 0.6-0.8 M-citrate), but were inhibited at the highest concentrations. The observed stimulation may have been caused by stabilizaton of plastocyanin that was complexed with the Photosystem I reaction centre, 4. At 1 M, potassium citrate protected O2 evolution against denaturation by heat or by the chaotropic agent NaNO3. 5. It is suggested that anions high in the Hofmeister series stimulated and stabilized electron transport by enhancing water structure around the protein complexes in the thylakoid membrane.


1996 ◽  
Vol 23 (3) ◽  
pp. 305 ◽  
Author(s):  
MV Sailaja ◽  
VSR Das

Highly characteristic responses of thylakoid membranes were observed in function and composition when fully developed plants of Amaranthus hypochondriacus L. grown under light sufficient (2000 μmol m-2 s-1) conditions were transferred to light limited conditions (650 μmol m-2 s-1 and 200 μmol m-2 s-1). The whole-chain, photosystem I and photosystem II electron transport rates were depressed in both bundle sheath and mesophyll thylakoids with remarkable differences between them in variation of rates under limiting light. The reduction in PSI electron transport in the mesophyll could be attributed to reduced PSI centres, while in the bundle sheath, a modulation of cytochrome b6/f complex regulated the rates of PSI electron transport. The requirement for an unaltered number of PSI centres under limiting light in the bundle sheath is ascribed to operation of an energy-consuming C4 pump.


1970 ◽  
Vol 25 (10) ◽  
pp. 1157-1159 ◽  
Author(s):  
A. Trebst ◽  
E. Harth ◽  
W. Draber

A halogenated benzoquinone has been found to inhibit the photosynthetic electron transport system in isolated chloroplasts. 2·10-6ᴍ of dibromo-thymoquinone inhibit the Hill- reaction with NADP, methylviologen or anthraquinone to 100%, but do not effect the photoreduction of NADP at the expense of an artificial electron donor. The Hill - reaction with ferricyanide is inhibited even at the high concentration of 2·10-5ᴍ of dibromo-thymoquinone to only 60%. The remaining reduction in the presence of the inhibitor reflects the rate of ferricyanide reduction by photosystem II. It is concluded that the inhibition of electron transport by the quinone occurs between photosystem I and II and close to or at the functional site of plastoquinone.


Sign in / Sign up

Export Citation Format

Share Document