Use of Amino Acid Uptake and Protein Synthesis Rates for Tumour Diagnosis

Author(s):  
H. Lundqvist
1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


1971 ◽  
Vol 125 (2) ◽  
pp. 515-520 ◽  
Author(s):  
P. J. Reeds ◽  
K. A. Munday ◽  
M. R. Turner

The separate effects of insulin and growth hormone on the uptake and incorporation of five amino acids into diaphragm muscle from non-hypophysectomized rabbits has been examined. Both growth hormone and insulin, when present in the medium separately, stimulated the incorporation into protein of the amino acids, leucine, arginine, valine, lysine and histidine. Insulin also stimulated amino acid uptake, but growth hormone did not. When insulin and growth hormone were present in the incubation medium together, the uptake and incorporation of valine, the only amino acid studied under these conditions, tended to be greater than the sum of the separate effects of the two hormones.


2001 ◽  
Vol 26 (2) ◽  
pp. 443-446 ◽  
Author(s):  
D.G. Morris ◽  
P. Humpherson ◽  
H.J. Leese ◽  
J.M. Sreenan

AbstractThere is no information on the metabolism of the cattle embryo during the period from day 8 to 16 a period of greatest embryonic loss. In this study the rate of protein synthesis and phosphorylation was measured in 13 to 15 day old cattle embryos. The rate of glucose utilisation and amino acid uptake/efflux by day 14 to 16 embryos was also measured. Protein synthesis and phosphorylation activity when expressed per unit of protein decreased with increasing embryo size and age. Similarly the rate of glucose utilisation was greatest for the earlier day 14 embryos. Embryos differed in their requirement for different amino acids. The pattern of uptake/efflux was similar to that of the earlier day 7 embryo. This study suggests that the metabolic rate of cattle embryos expressed per unit of protein content tends to decrease with increasing age and size from the initial burst of activity at day 13 around the time that expansion of the embryo begins.


2019 ◽  
Vol 101 (4) ◽  
pp. 719-732 ◽  
Author(s):  
Anna Tetkova ◽  
Andrej Susor ◽  
Michal Kubelka ◽  
Lucie Nemcova ◽  
Denisa Jansova ◽  
...  

Abstract Culture media used in assisted reproduction are commonly supplemented with gonadotropin hormones to support the nuclear and cytoplasmic maturation of in vitro matured oocytes. However, the effect of gonadotropins on protein synthesis in oocytes is yet to be fully understood. As published data have previously documented a positive in vitro effect of follicle-stimulating hormone (FSH) on cytoplasmic maturation, we exposed mouse denuded oocytes to FSH in order to evaluate the changes in global protein synthesis. We found that dose-dependent administration of FSH resulted in a decrease of methionine incorporation into de novo synthesized proteins in denuded mouse oocytes and oocytes cultured in cumulus-oocyte complexes. Similarly, FSH influenced methionine incorporation in additional mammalian species including human. Furthermore, we showed the expression of FSH-receptor protein in oocytes. We found that major translational regulators were not affected by FSH treatment; however, the amino acid uptake became impaired. We propose that the effect of FSH treatment on amino acid uptake is influenced by FSH receptor with the effect on oocyte metabolism and physiology.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 600-608 ◽  
Author(s):  
Georgina H. Cornish ◽  
Linda V. Sinclair ◽  
Doreen A. Cantrell

Although interleukin 2 (IL-2) and IL-15 signal through the common gamma chain (γc) and through IL-2 receptor β–chain (CD122) subunits, they direct distinct physiologic and immunotherapeutic responses in T cells. The present study provides some insight into why IL-2 and IL-15 differentially regulate T-cell function by revealing that these cytokines are strikingly distinct in their ability to control protein synthesis and T-cell mass. IL-2 and IL-15 are shown to be equivalent mitogens for antigen-stimulated CD8+ T cells but not for equivalent growth factors. Antigen-primed T cells cannot autonomously maintain amino acid incorporation or de novo protein synthesis without exogenous cytokine stimulation. Both IL-2 and IL-15 induce amino acid uptake and protein synthesis in antigen-activated T cells; however, the IL-2 response is strikingly more potent than the IL-15 response. The differential action of IL-2 and IL-15 on amino acid uptake and protein synthesis is explained by temporal differences in signaling induced by these 2 cytokines. Hence, the present results show that cytokines that are equivalent mitogens can have different potency in terms of regulating protein synthesis and cell growth.


Sign in / Sign up

Export Citation Format

Share Document