Ionic Conduction in Glasses

1993 ◽  
pp. 213-230 ◽  
Author(s):  
A. Magistris
Keyword(s):  
Author(s):  
J. Y. Koo ◽  
M. P. Anderson

Tetragonal Zr02 has been used as a toughening phase in a large number of ceramic materials. In this system, complex diffraction phenomena have been observed and an understanding of the origin of the diffraction effects provides important information on the nature of transformation toughening, ionic conduction, and phase destabilization. This paper describes the results of an electron diffraction study of Y203-stabilized, tetragonal Zr02 polycrystals (Y-TZP).Thin foils from the bulk Y-TZP sample were prepared by careful grinding and cryo ion-milling. They were carbon coated and examined in a Philips 400T/FEG microscope. Fig. 1 shows a typical bright field image of the 100% tetragonal(t) Zr02. The tetragonal structure was identified by both bulk x-ray diffraction and convergent beam electron diffraction (Fig. 2. A local region within a t-Zr02 grain was subjected to an intense electron beam irradiation which caused partial martensitic transformation of the t-Zr02 to monoclinic(m) symmetry, Fig. 3 A.


Author(s):  
R. B. Queenan ◽  
P. K. Davies

Na ß“-alumina (Na1.67Mg67Al10.33O17) is a non-stoichiometric sodium aluminate which exhibits fast ionic conduction of the Na+ ions in two dimensions. The Na+ ions can be exchanged with a variety of mono-, di-, and trivalent cations. The resulting exchanged materials also show high ionic conductivities.Considerable interest in the Na+-Nd3+-ß“-aluminas has been generated as a result of the recent observation of lasing in the pulsed and cw modes. A recent TEM investigation on a 100% exchanged Nd ß“-alumina sample found evidence for the intergrowth of two different structure types. Microdiffraction revealed an ordered phase coexisting with an apparently disordered phase, in which the cations are completely randomized in two dimensions. If an order-disorder transition is present then the cooling rates would be expected to affect the microstructures of these materials which may in turn affect the optical properties. The purpose of this work was to investigate the affect of thermal treatments upon the micro-structural and optical properties of these materials.


2019 ◽  
Vol 16 (6) ◽  
pp. 527-543 ◽  
Author(s):  
Pedro M.E. Mancini ◽  
Carla M. Ormachea ◽  
María N. Kneeteman

During the last twenty years, our research group has been working with aromatic nitrosubstituted compounds acting as electrophiles in Polar Diels-Alder (P-DA) reactions with different dienes of diverse nucleophilicity. In this type of reaction, after the cycloaddition reaction, the nitrated compounds obtained as the [4+2] cycloadducts suffer cis-extrusion with the loss of nitrous acid and a subsequent aromatization. In this form, the reaction results are irreversible. On the other hand, the microwave-assisted controlled heating become a powerful tool in organic synthesis as it makes the reaction mixture undergo heating by a combination of thermal effects, dipolar polarization and ionic conduction. As the Diels-Alder (D-A) reaction is one of the most important process in organic synthesis, the microwave (MW) irradiation was applied instead of conventional heating, and this resulted in better yields and shorter reaction times. Several substituted heterocyclic compounds were used as electrophiles and different dienes as nucleophiles. Two experimental situations are involved: one in the presence of Protic Ionic Liquids (PILs) as solvent and the other under solvent-free conditions. The analysis is based on experimental data and theoretical calculations.


Inorganics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Xiaoxuan Luo ◽  
Aditya Rawal ◽  
Kondo-Francois Aguey-Zinsou

Nanoconfinement is an effective strategy to tune the properties of the metal hydrides. It has been extensively employed to modify the ionic conductivity of LiBH4 as an electrolyte for Li-ion batteries. However, the approach does not seem to be applicable to other borohydrides such as NaBH4, which is found to reach a limited improvement in ionic conductivity of 10−7 S cm−1 at 115 °C upon nanoconfinement in Mobil Composition of Matter No. 41 (MCM-41) instead of 10−8 S cm−1. In comparison, introducing large cage anions in the form of Na2B12H12 naturally formed upon the nanoconfinement of NaBH4 was found to be more effective in leading to higher ionic conductivities of 10−4 S cm−1 at 110 °C.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 330
Author(s):  
Sangryun Kim ◽  
Kazuaki Kisu ◽  
Shin-ichi Orimo

We report the stabilization of the high-temperature (high-T) phase of lithium carba-closo-decaborate, Li(CB9H10), via the formation of solid solutions in a Li(CB9H10)-Li2(B12H12) quasi-binary system. Li(CB9H10)-based solid solutions in which [CB9H10]− is replaced by [B12H12]2− were obtained at compositions with low x values in the (1−x)Li(CB9H10)−xLi2(B12H12) system. An increase in the extent of [B12H12]2− substitution promoted stabilization of the high-T phase of Li(CB9H10), resulting in an increase in the lithium-ion conductivity. Superionic conductivities of over 10−3 S cm−1 were achieved for the compounds with 0.2 ≤ x ≤ 0.4. In addition, a comparison of the Li(CB9H10)−Li2(B12H12) system and the Li(CB9H10)−Li(CB11H12) system suggests that the valence of the complex anions plays an important role in the ionic conduction. In battery tests, an all-solid-state Li–TiS2 cell employing 0.6Li(CB9H10)−0.4Li2(B12H12) (x = 0.4) as a solid electrolyte presented reversible battery reactions during repeated discharge–charge cycles. The current study offers an insight into strategies to develop complex hydride solid electrolytes.


Sign in / Sign up

Export Citation Format

Share Document