Polar Diels-Alder Reactions Under Microwave Irradiation Employing Different Heterocyclic Compounds as Electrophiles

2019 ◽  
Vol 16 (6) ◽  
pp. 527-543 ◽  
Author(s):  
Pedro M.E. Mancini ◽  
Carla M. Ormachea ◽  
María N. Kneeteman

During the last twenty years, our research group has been working with aromatic nitrosubstituted compounds acting as electrophiles in Polar Diels-Alder (P-DA) reactions with different dienes of diverse nucleophilicity. In this type of reaction, after the cycloaddition reaction, the nitrated compounds obtained as the [4+2] cycloadducts suffer cis-extrusion with the loss of nitrous acid and a subsequent aromatization. In this form, the reaction results are irreversible. On the other hand, the microwave-assisted controlled heating become a powerful tool in organic synthesis as it makes the reaction mixture undergo heating by a combination of thermal effects, dipolar polarization and ionic conduction. As the Diels-Alder (D-A) reaction is one of the most important process in organic synthesis, the microwave (MW) irradiation was applied instead of conventional heating, and this resulted in better yields and shorter reaction times. Several substituted heterocyclic compounds were used as electrophiles and different dienes as nucleophiles. Two experimental situations are involved: one in the presence of Protic Ionic Liquids (PILs) as solvent and the other under solvent-free conditions. The analysis is based on experimental data and theoretical calculations.

2009 ◽  
Vol 62 (3) ◽  
pp. 208 ◽  
Author(s):  
Mohammed Abid ◽  
Béla Török ◽  
Xudong Huang

Over the years, microwave-assisted organic synthesis (MAOS) became a commonly applied mainstream tool for the synthesis of heterocyclic compounds. The broad range of emerging applications in this field is mainly due to the significant contribution of MAOS to the development of ecofriendly processes. Various transformations have been developed for the synthesis of N-heterocycles under microwave conditions, including fast and selective processes. Tandem reactions involving greener reaction media, solvent-free conditions, and solid-phase synthesis are of exceptional interest in this area. In most transformations, microwave conditions dramatically enhanced reaction rates, as well as provided improved yields. This account highlights the most recent advancements in MAOS-based tandem processes for the synthesis of N-heterocycles.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Marco Frediani ◽  
David Sémeril ◽  
Dominique Matt ◽  
Fabio Rizzolo ◽  
Anna Maria Papini ◽  
...  

AbstractSince the first contributions by Gedye and Giguere in 1986, growing attention has been registered on the use of microwave heating in organic synthesis. However still many aspects need to be clarified especially about the so called “microwave effect” and the possible degradation phenomena that may be recognized during polymer synthesis. In this work the complex cone-25,27- dipropyloxy-26,28-dioxo-calix[4]arene titanium (IV) dichloride (1) has been tested for the ring opening polymerization of L-lactide, comparing the effect of conventional heating with a possible microwave assisted strategy. The polymers obtained were fully characterized (NMR, IR, HPLC-SEC, DSC, MALDI-TOF and WAXD analysis). As expected the use of microwave irradiation induced an increase of the polymerization rate. On the other side the use of microwaves resulted in a slight loss of the control over molecular weight and molecular weight distribution if compared with a conventional thermal treatment.


2009 ◽  
Vol 62 (4) ◽  
pp. 392
Author(s):  
Mohammed Abid ◽  
Béla Török ◽  
Xudong Huang

Over the years, microwave-assisted organic synthesis (MAOS) became a commonly applied mainstream tool for the synthesis of heterocyclic compounds. The broad range of emerging applications in this field is mainly due to the significant contribution of MAOS to the development of ecofriendly processes. Various transformations have been developed for the synthesis of N-heterocycles under microwave conditions, including fast and selective processes. Tandem reactions involving greener reaction media, solvent-free conditions, and solid-phase synthesis are of exceptional interest in this area. In most transformations, microwave conditions dramatically enhanced reaction rates, as well as provided improved yields. This account highlights the most recent advancements in MAOS-based tandem processes for the synthesis of N-heterocycles.


1990 ◽  
Vol 68 (3) ◽  
pp. 404-411 ◽  
Author(s):  
Gervais Bérubé ◽  
Pierre Deslongchamps

The syntheses of the acyclic triene trans–trans–cis27 and trans–trans–trans31 are described. Macrocyclization and concomitant transannular Diels–Alder reaction were performed with the chloride derivative obtained from the trans–trans–cis triene alcohol 27 yielding a mixture of the tricyclic compounds trans–syn–trans33 and cis–syn–cis34. On the other hand, macrocyclization of the chloride derived from trans–trans–trans triene 31 was not successful. Keywords: transannular process, Diels–Alder reaction, macrocyclic triene, macrocyclization, tricyclic compounds, organic synthesis.


Química Nova ◽  
2020 ◽  
Author(s):  
Daniel Gonzaga ◽  
Luana Forezi ◽  
Carolina Lima ◽  
Patricia Ferreira ◽  
Fernando Silva ◽  
...  

The death of professor Rolf Huisgen (1920-2020) was announced on March 26th 2020, in the midst of the COVID-19 pandemic. Professor Huisgen was professor emeritus at the University of Munich in Germany, and studied in detail the mechanism of the 1,3-dipolar cycloaddition reaction, significantly expanding its scope. Even though he did not discover this reaction, it was through his studies that it became important in organic synthesis. Indeed, in honor of his work, the reaction became known as Huisgen’s cycloaddition and it has been consolidated as a useful method for the preparation of five-membered heterocyclic compounds. Considering these facts, in this review we provide an overview on the applications of 1,3-dipolar cycloaddition reactions, starting with the seminal examples in the field and further discussing the most recent applications.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5373
Author(s):  
Aneta Kurpanik ◽  
Marek Matussek ◽  
Piotr Lodowski ◽  
Grażyna Szafraniec-Gorol ◽  
Michał Krompiec ◽  
...  

PAHs (polycyclic aromatics hydrocarbons), the compound group that contains perylene and its derivatives, including functionalized ones, have attracted a great deal of interest in many fields of science and modern technology. This review presents all of the research devoted to modifications of PAHs that are realized via the Diels–Alder (DA) cycloaddition of various dienophiles to the bay regions of PAHs, leading to the π-extension of the starting molecule. This type of annulative π-extension (APEX) strategy has emerged as a powerful and efficient synthetic method for the construction of polycyclic aromatic hydrocarbons and their functionalized derivatives, nanographenes, and π-extended fused heteroarenes. Then, [4 + 2] cycloadditions of ethylenic dienophiles, -N=N-, i.e., diazo-dienophiles and acetylenic dienophiles, are presented. This subject is discussed from the organic synthesis point of view but supported by theoretical calculations. The possible applications of DA cycloaddition to PAH bay regions in various science and technology areas, and the prospects for the development of this synthetic method, are also discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (63) ◽  
pp. 50890-50912 ◽  
Author(s):  
Majid M. Heravi ◽  
Vaezeh Fathi Vavsari

Diels–Alder (D–A) reaction is undoubtedly the most powerful [4 + 2] cycloaddition reaction in organic synthesis.


2018 ◽  
Vol 83 (7-8) ◽  
pp. 837-846
Author(s):  
Abdurrahman Atalay ◽  
Riza Abbasoglu

The Diels?Alder (DA) reaction between the cage-annulated diene hexacyclo[7.5.2.01,6.06,13.08,12.010,14]hexadeca-2,4-diene-7,16-dione (HHDD) with a cyclohexa-1,3-diene moiety and ethyl propiolate (EP) dienophile was investigated by the DFT method at the B3LYP/6-31+G(d,p) level to elucidate the mechanism and regioselectivity features of the reaction. The geometrical and electronic structures of the caged diene HHDD and EP were studied at B3LYP/6-31+G(d,p) level. In order to identify facial- and regio-selectivity of the DA reaction of HHDD and EP, the frontier molecular orbital (FMO) interactions of the reactants according to the FMO theory, and the molecular electrostatic potential map of HHDD were examined. The potential energy surface (PES) of the related DA reaction was calculated, and optimizations of transition states and of products corresponding to critical points on the PES were performed at the B3LYP/6-31+G(d,p), and their configurations were determined. In addition, the thermodynamic and kinetic parameters of each possible cycloaddition reaction were calculated using the B3LYP/6-31+G(d,p) method to determine whether the reaction occurs under thermodynamic or kinetic control. The thermochemical results showed that the related DA cycloaddition proceeds under kinetic control, and the activation energies of syn cycloadditions are clearly lower than that of anti cycloadditions. The theoretical calculations are in good agreement with experimental results.


2019 ◽  
Vol 23 (11) ◽  
pp. 1214-1238 ◽  
Author(s):  
Navjeet Kaur ◽  
Pranshu Bhardwaj ◽  
Meenu Devi ◽  
Yamini Verma ◽  
Neha Ahlawat ◽  
...  

Due to special properties of ILs (Ionic Liquids) like their wide liquid range, good solvating ability, negligible vapour pressure, non-inflammability, environment friendly medium, high thermal stability, easy recycling and rate promoters etc. they are used in organic synthesis. The investigation for the replacement of organic solvents in organic synthesis is a growing area of interest due to increasing environmental issues. Therefore, ionic liquids have attracted the attention of chemists and act as a catalyst and reaction medium in organic reaction with high activity. There is no doubt that ionic liquids have become a major subject of study for modern chemistry. In comparison to traditional processes the use of ionic liquids resulted in improved, complimentary or alternative selectivities in organic synthesis. The present manuscript reported the synthesis of multiple nitrogen containing five-membered heterocyclic compounds using ionic liquids. This review covered interesting discoveries in the past few years.


Sign in / Sign up

Export Citation Format

Share Document