Hotspots and the Case for a High Viscosity Lower Mantle

Author(s):  
Mark A. Richards
Keyword(s):  
2020 ◽  
Author(s):  
Grace E. Shephard ◽  
John Hernlund ◽  
Christine Houser ◽  
Reidar Trønnes ◽  
Fabio Crameri

<p>The lower mantle can be grouped into high, low, and average (i.e., ambient) seismic velocity domains at each depth, based on the amplitude and polarity of wavespeed perturbations (% δlnVs, % δlnVp). Many studies focus on elucidating the thermo-chemical and structural origins of fast and slow domains, in particular. Subducted slabs are associated with fast seismic anomalies throughout the mantle, and reconstructed palaeo-positions of Cenozoic to Mesozoic subduction zones agrees with seismically imaged deep slabs. Conversely, slow wavespeed domains account for the two antipodal LLSVPs in the lowermost mantle, which are potentially long-lived features, as well as rising hot mantle above the LLSVPs and discrete mantle plumes. However, low-amplitude wavespeeds (close to the reference velocity models) are often overlooked By comparing multiple P- and S-wave tomographic models individually, and through “vote maps”, we reveal the depth-dependent characteristics and the geometry of ambient structures, and compare them to numerical convection models. The ambient velocity domains may contain early refractory and bridgmantic mantle with elevated Si/(Mg+Fe) and Mg/Fe ratios (BEAMS; bridgmanite-enriched mantle structures). They could have formed by early basal magma ocean (BMO) fractionation during a period of core-BMO exchange of SiO<sub>2</sub> (from core to BMO) and FeO (from BMO to core), or represent cumulates of BMO crystallization with bridgmanite as the liquidus phase. The high viscosity of bridgmanitic material may promote its convective aggregation and stabilise the large-scale, degree-2 convection pattern. Despite its high viscosity, bridgmanitic material, representing a primitive and refractory reservoir for primordial-like He and Ne components, might be entrained in vigorous, deep-rooted plumes. The restriction of a weak seismic signal, ascribed to iron spin-pairing in ferropericlase, to the fast and slow domains, supports the notion that the ambient lower mantle domains are bridgmanitic.</p>


1998 ◽  
Vol 35 (5) ◽  
pp. 562-568 ◽  
Author(s):  
Patrick Wu

Knowledge of whether earthquake activity will increase in the next few thousand years is important for the planning of nuclear waste repositories. Assuming that fault instability portends earthquake activity, the rate of change in fault instability for the next few thousand years in eastern Canada is computed for two viscosity models. It is shown that a uniform-viscosity (1 x 1021 Pa ·s) mantle predicts decreasing fault instability. However, a high-viscosity (1 x 1023 Pa ·s) lower mantle predicts a significant increase in fault instability, with an overall rate of -0.06 MPa/ka. Due to the lack of consensus on lower mantle viscosity, the case for increasing earthquake activity is definitely a possibility, so more study on mantle rheology, ice deglaciation history, and intraplate earthquakes in the planning of nuclear waste repositories is needed.


2020 ◽  
Author(s):  
Gary Jarvis

<p>Two dimensional numerical models of mantle convection in a cylindrical shell provide a possible geodynamic explanation for cold patches in the mantle below India and Mongolia as detected by seismic tomography. We investigate the influence of very high viscosities at mid-mantle and lower-mantle depths, as proposed by Mitrovica and Forte (2004) and Steinberger and Calderwood (2006), on mantle convective flow.  Models are considered with and without mineral phase transitions.  Our viscosity profiles are depth dependent with deep mantle viscosities increasing to values of 300 times the viscosity of the upper mantle, and then decreasing dramatically on approaching the core-mantle boundary.   The decrease of viscosity near the CMB mobilizes the overall mantle-wide flow despite very high mid-mantle viscosities.  However, cold detached slabs sinking below continental collisions become captured by the high viscosity interior and circulate slowly for times exceeding 200 Myr.  The separation of time scales for mantle-wide flow vs slab circulation, is a consequence of the high viscosity of the mid-mantle.</p>


2009 ◽  
Vol 106 (6) ◽  
pp. 242-247
Author(s):  
C. Damerval ◽  
H. Tavernier ◽  
L. Avedian ◽  
P. Disant ◽  
P. Delfosse ◽  
...  

1991 ◽  
Vol 1 (3) ◽  
pp. 239-252 ◽  
Author(s):  
Harry N. Buckner ◽  
Paul E. Sojka

Sign in / Sign up

Export Citation Format

Share Document