Intermediates in Ionic Gas Phase Organic Reactions: I. Weakly Bonded Species

Author(s):  
H. E. Audier ◽  
P. Mourgues ◽  
J. Tortajada ◽  
D. Berthomieu
Keyword(s):  
2013 ◽  
Vol 353 ◽  
pp. 1-6 ◽  
Author(s):  
Charles M. Nichols ◽  
Zhibo Yang ◽  
Veronica M. Bierbaum

2021 ◽  
pp. 1-14
Author(s):  
Parisa Gholamirad ◽  
Morteza Rouhani

A computational study about the effect of BX3 (X = H, F, Cl and Br) interaction in C–H acidity enhancement of some aldehyde, ketone and imine molecules is performed by B3LYP/6- 311++G(d,p) method in gas phase. The boron derivatives of model molecules show more acidity in comparison with their pure forms. This acidity improvement is attributed to the effective interaction of the C = O/C = N group with the B atom of BX3. The acidity enhancement is according to the BBr3 >  BCl3 >  BF3 >  BH3 order which shows that boron compounds with electron withdrawing groups and especially BBr3 can be used as an effective and promising C–H activator in various organic reactions.


Author(s):  
H. E. Audier ◽  
J. Fossey ◽  
D. Leblanc ◽  
P. Mourgues ◽  
V. Troude

ChemInform ◽  
2010 ◽  
Vol 31 (25) ◽  
pp. no-no
Author(s):  
H. E. Audier ◽  
P. Mourgues ◽  
J. Tortajada ◽  
D. Berthomieu
Keyword(s):  

ChemInform ◽  
2010 ◽  
Vol 31 (25) ◽  
pp. no-no
Author(s):  
H. E. Audier ◽  
J. Fossey ◽  
D. Leblanc ◽  
P. Mourgues ◽  
V. Troude

Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

The action of water and the electron beam on organic specimens in the electron microscope results in the removal of oxidizable material (primarily hydrogen and carbon) by reactions similar to the water gas reaction .which has the form:The energy required to force the reaction to the right is supplied by the interaction of the electron beam with the specimen.The mass of water striking the specimen is given by:where u = gH2O/cm2 sec, PH2O = partial pressure of water in Torr, & T = absolute temperature of the gas phase. If it is assumed that mass is removed from the specimen by a reaction approximated by (1) and that the specimen is uniformly thinned by the reaction, then the thinning rate in A/ min iswhere x = thickness of the specimen in A, t = time in minutes, & E = efficiency (the fraction of the water striking the specimen which reacts with it).


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


Sign in / Sign up

Export Citation Format

Share Document