Grain properties

Sedimentology ◽  
1982 ◽  
pp. 35-43 ◽  
Author(s):  
M. R. Leeder
Keyword(s):  
Author(s):  
Monique C. Aller ◽  
Varsha P. Kulkarni ◽  
Donald G. York ◽  
Daniel E. Welty ◽  
Giovanni Vladilo ◽  
...  

AbstractGas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 μm silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.


2017 ◽  
Author(s):  
Camille Litty ◽  
Fritz Schlunegger ◽  
Willem Viveen

Abstract. Twenty-one coastal rivers located on the western Peruvian margin were analyzed to determine the relationships between fluvial and environmental processes and sediment grain properties such as grain size, roundness and sphericity. Modern gravel beds were sampled along a north-south transect on the western side of the Peruvian Andes, and at each site the long a-axis and the intermediate b-axis of about 500 pebbles were measured. Morphometric properties such as river gradient, catchment size and discharge of each drainage basin were determined and compared against measured grain properties. Grain size data show a constant value of the D50 percentile all along the coast, but an increase in the D84 and D96 values and an increase in the ratio of the intermediate and the long axis from south to north. Our results then yield better-sorted and less spherical material in the south when compared to the north. No correlations were found between the grain size and the morphometric properties of the river basins when considering the data together. Grouping the results in a northern and southern group shows better-sorted sediments and lower D84 and D96 values for the southern group of basins. Within the two groups, correlations were found between the grain size distributions and morphometric basins properties. Our data indicates that fluvial transport is the dominant process controlling the erosion, transport and deposition of sediment in the southern basins while we propose a geomorphic control on the grain size properties in the northern basins. Sediment properties in the northern and southern basins could not be linked to differences in tectonic controls. On the other hand, the north-south trend in the grain size and in the b/a ratio seems controlled by a shift towards a more humid climate and towards a stronger El Nino impact in northern Peru. But, generally speaking, the resulting trends and differences in sediment properties seem controlled by differences in the complex geomorphic setting along the arc and forearc regions.


2017 ◽  
Vol 607 ◽  
pp. A130 ◽  
Author(s):  
A. Dutrey ◽  
S. Guilloteau ◽  
V. Piétu ◽  
E. Chapillon ◽  
V. Wakelam ◽  
...  

Context. Determining the gas density and temperature structures of protoplanetary disks is a fundamental task in order to constrain planet formation theories. This is a challenging procedure and most determinations are based on model-dependent assumptions. Aims. We attempt a direct determination of the radial and vertical temperature structure of the Flying Saucer disk, thanks to its favorable inclination of 90 degrees. Methods. We present a method based on the tomographic study of an edge-on disk. Using ALMA, we observe at 0.5″ resolution the Flying Saucer in CO J = 2–1 and CS J = 5–4. This edge-on disk appears in silhouette against the CO J = 2–1 emission from background molecular clouds in ρ Oph. The combination of velocity gradients due to the Keplerian rotation of the disk and intensity variations in the CO background as a function of velocity provide a direct measure of the gas temperature as a function of radius and height above the disk mid-plane. Results. The overall thermal structure is consistent with model predictions, with a cold (<12−15 K) CO-depleted mid-plane and a warmer disk atmosphere. However, we find evidence for CO gas along the mid-plane beyond a radius of about 200 au, coincident with a change of grain properties. Such behavior is expected in the case of efficient rise of UV penetration re-heating the disk and thus allowing CO thermal desorption or favoring direct CO photo-desorption. CO is also detected at up to 3–4 scale heights, while CS is confined to around 1 scale height above the mid-plane. The limits of the method due to finite spatial and spectral resolutions are also discussed. Conclusions. This method appears to be a very promising way to determine the gas structure of planet-forming disks, provided that the molecular data have an angular resolution which is high enough, on the order of 0.3−0.1″ at the distance of the nearest star-forming regions.


Author(s):  
Robert E. Davis ◽  
Jeff Dozier ◽  
Ron Perla
Keyword(s):  

2017 ◽  
Vol 21 (3) ◽  
pp. 1741-1756 ◽  
Author(s):  
Sebastian Würzer ◽  
Nander Wever ◽  
Roman Juras ◽  
Michael Lehning ◽  
Tobias Jonas

Abstract. Rain on snow (ROS) has the potential to generate severe floods. Thus, precisely predicting the effect of an approaching ROS event on runoff formation is very important. Data analyses from past ROS events have shown that a snowpack experiencing ROS can either release runoff immediately or delay it considerably. This delay is a result of refreeze of liquid water and water transport, which in turn is dependent on snow grain properties but also on the presence of structures such as ice layers or capillary barriers. During sprinkling experiments, preferential flow was found to be a process that critically impacted the timing of snowpack runoff. However, current one-dimensional operational snowpack models are not capable of addressing this phenomenon. For this study, the detailed physics-based snowpack model SNOWPACK is extended with a water transport scheme accounting for preferential flow. The implemented Richards equation solver is modified using a dual-domain approach to simulate water transport under preferential flow conditions. To validate the presented approach, we used an extensive dataset of over 100 ROS events from several locations in the European Alps, comprising meteorological and snowpack measurements as well as snow lysimeter runoff data. The model was tested under a variety of initial snowpack conditions, including cold, ripe, stratified and homogeneous snow. Results show that the model accounting for preferential flow demonstrated an improved overall performance, where in particular the onset of snowpack runoff was captured better. While the improvements were ambiguous for experiments on isothermal wet snow, they were pronounced for experiments on cold snowpacks, where field experiments found preferential flow to be especially prevalent.


Sign in / Sign up

Export Citation Format

Share Document