scholarly journals Multiple controls on sediment grain properties of Peruvian coastal river basins

2017 ◽  
Author(s):  
Camille Litty ◽  
Fritz Schlunegger ◽  
Willem Viveen

Abstract. Twenty-one coastal rivers located on the western Peruvian margin were analyzed to determine the relationships between fluvial and environmental processes and sediment grain properties such as grain size, roundness and sphericity. Modern gravel beds were sampled along a north-south transect on the western side of the Peruvian Andes, and at each site the long a-axis and the intermediate b-axis of about 500 pebbles were measured. Morphometric properties such as river gradient, catchment size and discharge of each drainage basin were determined and compared against measured grain properties. Grain size data show a constant value of the D50 percentile all along the coast, but an increase in the D84 and D96 values and an increase in the ratio of the intermediate and the long axis from south to north. Our results then yield better-sorted and less spherical material in the south when compared to the north. No correlations were found between the grain size and the morphometric properties of the river basins when considering the data together. Grouping the results in a northern and southern group shows better-sorted sediments and lower D84 and D96 values for the southern group of basins. Within the two groups, correlations were found between the grain size distributions and morphometric basins properties. Our data indicates that fluvial transport is the dominant process controlling the erosion, transport and deposition of sediment in the southern basins while we propose a geomorphic control on the grain size properties in the northern basins. Sediment properties in the northern and southern basins could not be linked to differences in tectonic controls. On the other hand, the north-south trend in the grain size and in the b/a ratio seems controlled by a shift towards a more humid climate and towards a stronger El Nino impact in northern Peru. But, generally speaking, the resulting trends and differences in sediment properties seem controlled by differences in the complex geomorphic setting along the arc and forearc regions.

2017 ◽  
Vol 5 (3) ◽  
pp. 571-583 ◽  
Author(s):  
Camille Litty ◽  
Fritz Schlunegger ◽  
Willem Viveen

Abstract. To determine possible controls on sediment grain properties, 21 coastal rivers located along the entire western Peruvian margin were analysed. This represents one of the largest grain size dataset that has been collected over a large area. Modern gravel beds were sampled along a north–south transect on the western side of the Peruvian Andes where the rivers cross the tip of the mountain range, and at each site the long a axis and the intermediate b axis of about 500 pebbles were measured. Morphometric properties of each drainage basin, sediment and water discharge, together with flow shear stresses, were determined and compared against measured grain properties. Pebble size data show that the values for the D50 are nearly constant and range between 2 and 3 cm, while the values of the D96 range between 6 and 12 cm. The ratios between the intermediate and the long axis range from 0.67 to 0.74. Linear correlations between all grain size percentiles and water shear stresses, mean basin denudation rates, mean basin slopes and basin sizes are small to non-existent. However, exceptionally large D50 values of 4–6 cm were measured for basins situated between 11–12 and 16–17° S latitude where hillslope gradients are steeper than on average or where mean annual stream flows exceed the average values of the western Peruvian streams by a factor of 2. We suggest that the generally uniform grain size pattern has been perturbed where either mean basin slopes or water fluxes exceed threshold conditions.


2015 ◽  
Vol 11 (1) ◽  
pp. 27-44 ◽  
Author(s):  
K. Schittek ◽  
M. Forbriger ◽  
B. Mächtle ◽  
F. Schäbitz ◽  
V. Wennrich ◽  
...  

Abstract. High-altitude peatlands of the Andes still remain relatively unexploited although they offer an excellent opportunity for well-dated palaeoenvironmental records. To improve knowledge about climatic and environmental changes in the western Andes of southern Peru, we present a high-resolution record of the Cerro Llamoca peatland for the last 8600 years. The 10.5 m long core consists of peat and intercalated sediment layers and was examined for all kinds of microfossils. We chose homogeneous peat sections for pollen analysis at decadal to centennial resolution. The inorganic geochemistry was analysed in 2 mm resolution (corresponding >2 years) using an ITRAX X-ray fluorescence core scanner. We interpret phases of relatively high abundances of Poaceae pollen in our record as an expansion of Andean grasslands during humid phases. Drier conditions are indicated by a significant decrease of Poaceae pollen and higher abundances of Asteraceae pollen. The results are substantiated by changes in arsenic contents and manganese/iron ratios, which turned out to be applicable proxies for in situ palaeoredox conditions. The mid-Holocene period of 8.6–5.6 ka is characterised by a series of episodic dry spells alternating with spells that are more humid. After a pronounced dry period at 4.6–4.2 ka, conditions generally shifted towards a more humid climate. We stress a humid/relatively stable interval between 1.8 and 1.2 ka, which coincides with the florescence of the Nasca culture in the Andean foothills. An abrupt turn to a sustained dry period occurs at 1.2 ka, which is contemporaneous with the demise of the Nasca/Wari society in the Palpa lowlands. Markedly drier conditions prevail until 0.75 ka, providing evidence of the presence of a Medieval Climate Anomaly. Moister but hydrologically highly variable conditions prevailed again after 0.75 ka, which allowed re-expansion of tussock grasses in the highlands, increased discharge into the Andean foreland and resettling of the lowlands during this so-called late Intermediate Period (LIP). On a supraregional scale, our findings can ideally be linked to and proved by the archaeological chronology of the Nasca–Palpa region as well as other high-resolution marine and terrestrial palaeoenvironmental records. Our findings show that hydrological fluctuations, triggered by the changing intensity of the monsoonal tropical summer rains emerging from the Amazon Basin in the north-east, have controlled the climate in the study area.


The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Boo-Keun Khim ◽  
Sunghan Kim ◽  
Yu-Hyeon Park ◽  
Jongmin Lee ◽  
Sangbeom Ha ◽  
...  

Various sediment properties, such as mean grain size, total organic carbon, total nitrogen, C/N ratio, CaCO3, and biogenic opal content, were analyzed for a box core (BC02; 45 cm long) and a gravity core (GC02; 628 cm long), which were collected from the western margin of the Hupo Trough located off the eastern coast of Korea. The study area has been affected by the East Korea Warm Current (EKWC), a branch of the Tsushima Warm Current (TWC). The analytical results obtained for BC02 and the upper part of GC02 were in agreement, affirming the core-top preservation of GC02. Based on the corrected calibrated AMS 14C dates, the sedimentation rate of GC02 changed abruptly at ~8.2 ka from ~4.0–10.2 cm/kyr in the lower part to ~56.6–91.0 cm/kyr in the middle to upper part. This corresponds to the lithologic change from sandy mud to mud sediments showing the mean grain size change from 6.9 to 46.0 μm. Diverse paleoceanographic proxies representing the surface water condition exhibited varying degree of change at ~8.2 ka, after which all the properties remain almost unchanged, implying stable and continuous depositional conditions following the complete development of the EKWC. Furthermore, it indicated that the sediment depositional conditions in the Hupo Trough in response to the EKWC might have stabilized at ~8.2 ka since the opening of the Korea Strait during the Holocene sea level rise. Moreover, microfossil data from previous studies on the establishment of the TWC in the East Sea (Japan Sea) support our interpretation that the sediment properties revealed the Holocene development of the EKWC in the Hupo Trough.


The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 479-484
Author(s):  
Daniel P Maxbauer ◽  
Mark D Shapley ◽  
Christoph E Geiss ◽  
Emi Ito

We present two hypotheses regarding the evolution of Holocene climate in the Northern Rocky Mountains that stem from a previously unpublished environmental magnetic record from Jones Lake, Montana. First, we link two distinct intervals of fining magnetic grain size (documented by an increasing ratio of anhysteretic to isothermal remanent magnetization) to the authigenic production of magnetic minerals in Jones Lake bottom waters. We propose that authigenesis in Jones Lake is limited by rates of groundwater recharge and ultimately regional hydroclimate. Second, at ~8.3 ka, magnetic grain size increases sharply, accompanied by a drop in concentration of magnetic minerals, suggesting a rapid termination of magnetic mineral authigenesis that is coeval with widespread effects of the 8.2 ka event in the North Atlantic. This association suggests a hydroclimatic response to the 8.2 ka event in the Northern Rockies that to our knowledge is not well documented. These preliminary hypotheses present compelling new ideas that we hope will both highlight the sensitivity of magnetic properties to record climate variability and attract more work by future research into aridity, hydrochemical response, and climate dynamics in the Northern Rockies.


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


2016 ◽  
Vol 4 (4) ◽  
pp. 831-869 ◽  
Author(s):  
Andrew D. Wickert

Abstract. Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.


1996 ◽  
Vol 42 (142) ◽  
pp. 440-446 ◽  
Author(s):  
Roberto H. Gwiazda ◽  
Sidney R. Hemming ◽  
Wallace S. Broecker ◽  
Tullis Onsttot ◽  
Chris Mueller

Abstract40Ar/39Ar ages of most single ice-ratted amphiboles from Heinrich layer 2 (H2) from a core in the Labrador Sea, a core in the eastern North Atlantic and a core in the western North Atlantic range from 1600 to 2000 Ma. This range is identical to that for K/Ar ages from the Churchill province of the Canadian Shield that outcrops at Hudson Strait and forms the basement of the northern part of Hudson Bay. The ambient glacial sediment includes some younger and older grains derived from Paleozoic, Mesoproterozoic and Archean sources, but still the majority of the amphiboles have ages in the 1600–2000 Ma interval. The Ca/K ratios of these 1600–2000 Ma old amphiboles, however, have a bimodal distribution in contrast with the uniformity of the Ca/K ratios of H2 amphiboles. This indicates that 1600–2000 Ma old amphiboles of the ambient sediment were derived from an additional Early Proterozoic source besides Churchill province. In H2, Churchill-derived grains constitute 20–40% of the ice-rafted debris (IRD). The fraction in the ambient glacial sediment is 65–80%. Results presented here are consistent with the hypothesis that Heinrich events were produced by a sudden intensification of the iceberg discharge through Hudson Strait that mixed, in the North Atlantic, with icebergs that continued to calve from other ice sheets. The shift from mixed sources in the background sediment to a large dominance of Churchill province grains in H2 indicates that, even if calving of other ice sheets intensified during the Heinrich episode, the increase in the iceberg discharge via Hudson Strait from the Hudson Bay drainage basin of the Laurentide ice sheet was by far the largest.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Chen ◽  
Jianjun Zou ◽  
Aimei Zhu ◽  
Xuefa Shi ◽  
Dirk Nürnberg ◽  
...  

Investigating the composition and distribution of pelagic marine sediments is fundamental in the field of marine sedimentology. The spatial distributions of surface sediment are unclear due to limited investigation along the Emperor Seamount Chain of the North Pacific. In this study, a suite of sedimentological and geochemical proxies were analyzed, including the sediment grain size, organic carbon, CaCO3, major and rare earth elements of 50 surface sediment samples from the Emperor Seamount Chain, spanning from ∼33°N to ∼52°N. On the basis of sedimentary components, we divide them into three Zones (I, II, and III) spatially with distinct features. Sediments in Zone I (∼33°N–44°N) and Zone III (49.8°N–53°N) are dominated by clayey silt, and mainly consist of sand and silty sand in Zone II. The mean grain size of the sortable silt shows that the hydrodynamic condition in the study area is significantly stronger than that of the abyssal plain, especially at the water depth of 1,000–2,500 m. The CaCO3 contents in sediments above 4,000 m range from 20 to 84% but decrease sharply to less than 1.5% below 4,000 m, confirming that the water depth of 4,000 m is the carbonate compensation depth of the study area. Strong positive correlations between Al2O3 and Fe2O3, TiO2, MgO, and K2O (R > 0.9) in the bulk sediments indicate pronounced contributions of terrigenous materials from surrounding continent mass to the study area. Furthermore, the eolian dust makes contributions to the composition of bulk sediments as confirmed by rare earth elements. There is no significant correlation between grain size and major and minor elements, which indicates that the sedimentary grain size does not exert important effects on terrigenous components. There is significant negative δCe and positive δEu anomalies at all stations. The negative Ce anomaly mainly exists in carbonate-rich sediments, inheriting the signal of seawater. The positive Eu anomaly indicates widespread volcanism contributions to the study area from active volcanic islands arcs around the North Pacific. The relative contributions of terrestrial, volcanic, and biogenic materials vary with latitude and water depth in the study area.


Sign in / Sign up

Export Citation Format

Share Document