The Hopkinson Bar

Author(s):  
D. J. Parry
Keyword(s):  
Strain ◽  
2021 ◽  
Author(s):  
Anatoly M. Bragov ◽  
Leonid A. Igumnov ◽  
Aleksandr Y. Konstantinov ◽  
Leopold Kruszka ◽  
Dmitry A. Lamzin ◽  
...  

2014 ◽  
Vol 500 (11) ◽  
pp. 112018 ◽  
Author(s):  
P D Church ◽  
P J Gould ◽  
A D Wood ◽  
A Tyas

2017 ◽  
Vol 103 ◽  
pp. 50-63 ◽  
Author(s):  
Marco Sasso ◽  
Michele Gabrio Antonelli ◽  
Edoardo Mancini ◽  
Mario Radoni ◽  
Dario Amodio

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2012 ◽  
Vol 490-495 ◽  
pp. 499-503
Author(s):  
Ping Li ◽  
Yun Bo Shi ◽  
Jun Liu ◽  
Shi Qiao Gao

This paper presents a novel MEMS high g acceleration sensor based on piezoresistive effect. For the designed sensor structure, the formula of stress, natural frequency and damping was derived in theory, and the resonant frequency can up to 500kHz. After the structure parameters were designed, the sensor was fabricated by the standard processing technology, and the sensitivity was tested by Hopkinson bar. According to the experimental results, the sensitivity of the high g acceleration sensor is 0.125μV/g at the impact load of 164,002g.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiongwei Cui ◽  
Xiongliang Yao ◽  
Yingyu Chen

Direct measurement of the wall pressure loading subjected to the near-field underwater explosion is of great difficulty. In this article, an improved methodology and a lab-scale experimental system are proposed and manufactured to assess the wall pressure loading. In the methodology, a Hopkinson bar (HPB), used as the sensing element, is inserted through the hole drilled on the target plate and the bar’s end face lies flush with the loaded face of the target plate to detect and record the pressure loading. Furthermore, two improvements have been made on this methodology to measure the wall pressure loading from a near-field underwater explosion. The first one is some waterproof units added to make it suitable for the underwater environment. The second one is a hard rubber cylinder placed at the distal end, and a pair of ropes taped on the HPB is used to pull the HPB against the cylinder hard to ensure the HPB’s end face flushes with loaded face of the target plate during the bubble collapse. To validate the pressure measurement technique based on the HPB, an underwater explosion between two parallelly mounted circular target plates is used as the validating system. Based on the assumption that the shock wave pressure profiles at the two points on the two plates which are symmetrical to each other about the middle plane of symmetry are the same, it was found that the pressure obtained by the HPB was in excellent agreement with pressure transducer measurements, thus validating the proposed technique. To verify the capability of this improved methodology and experimental system, a series of minicharge underwater explosion experiments are conducted. From the recorded pressure-time profiles coupled with the underwater explosion evolution images captured by the HSV camera, the shock wave pressure loading and bubble-jet pressure loadings are captured in detail at 5  mm, 10  mm, …, 30  mm stand-off distances. Part of the pressure loading of the experiment at 35  mm stand-off distance is recorded, which is still of great help and significance for engineers. Especially, the peak pressure of the shock wave is captured.


2018 ◽  
Vol 183 ◽  
pp. 02065
Author(s):  
V. Rey-de-Pedraza ◽  
F. Gálvez ◽  
D. Cendón Franco

The Hopkinson Bar has been widely used by many researchers for the analysis of dynamic properties of different brittle materials and, due to its great interest, for the study of concrete. In concrete structures subjected to high velocity impacts, initial compression pulses travel through the material leading to tensile stresses when they reach a free surface. These tensile efforts are the main cause of concrete fracture due to its low tensile strength compared to the compressive one. This is the reason why dynamic tests in concrete are becoming of great interest and are mostly focused in obtaining tensile fracture properties. Apart form the dynamic tensile strength, which has been widely studied by many authors in the last decades, the dynamic fracture energy presents an increased difficulty and so not too much experimental information can be found in literature. Moreover, up to date there is not a clear methodology proposed in order to obtain this parameter in an accurate way. In this work a new methodology for measuring the dynamic fracture energy is proposed by using the Hopkinson Bar technique. Initial tests for a conventional concrete have been carried out and the results for the dynamic fracture energy of concrete at different strain rates are presented.


Sign in / Sign up

Export Citation Format

Share Document