core density
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Meng Han ◽  
Chao Yao ◽  
Xianping Zhang ◽  
Dongliang Wang ◽  
Chiheng Dong ◽  
...  

Abstract BaxK1-xFe2As2 (BaK-122) iron-based superconductors (IBSs) have been considered to be promising for high-field applications. The transport J c performance of BaK-122 wires and tapes is continuously enhanced by introducing advanced fabricating methods. The mass density of BaK-122 superconducting core in wires and tapes is important to the transport J c performance and related to the mechanical behavior during preparation. In this work, the mechanical property parameters including Poisson's ratio-density, yield strength-density, and elastic modulus-density of BaK-122 IBS powder were examined via uniaxial compression experiments. The density-dependent mechanical constitutive of BaK-122 was obtained for the first time. The relationship function between density and Vickers hardness of BaK-122 was established as HV0.05=0.0249ρ5.332 based on the numerical simulation of hardness testing, and a method for characterizing the BaK-122 core density was developed. It had been found the sheath materials and preparation method have great influences on the stress state of the BaK-122 core, and then affect the density. The densification mechanism and corresponding improvement method were revealed to provide guidance for preparing high-density BaK-122 wires and tapes. Finally, the generalized relationship between density and the superconducting transport J c was established according to lots of experimental data from multiple BaK-122 samples, which has confirmed the positive correlation of ρcore and J c. We comparatively discussed the various cold-work and heat-treatment processes used in our team for preparing the BaK-122 wires and tapes, and the critical factors affecting the transport performance were summarized.


2021 ◽  
Vol 923 (2) ◽  
pp. L29
Author(s):  
Bingxiao Xu ◽  
Yingjie Peng

Abstract We study the structural and environmental dependence of star formation on the plane of stellar mass versus central core density (Σ1 kpc) in the nearby universe. We study the central galaxies in the sparse environment and find a characteristic population-averaged Σ1 kpc ∼ 109–109.2 M ⊙ kpc−2, above which quenching is operating. This Σ 1 kpc crit only weakly depends on the stellar mass, suggesting that the mass quenching of the central galaxies is closely related to the processes that operate in the central region rather than over the entire galaxies. For satellites, at a given stellar mass, environment quenching appears to operate in a similar fashion as mass quenching in centrals, also starting from galaxies with high Σ1 kpc to low Σ1 kpc, and Σ 1 kpc crit becomes strongly mass-dependent, in particular in dense regions. This is because (1) more low-mass satellites are quenched by the environmental effects in denser regions and (2) at fixed stellar mass and environment, the environment-quenched satellites have, on average, larger Σ1 kpc, M 1 kpc/M ⋆, and Sérsic index n, and as well as smaller size. These results imply that either some dynamical processes change the structure of the satellites during quenching or the satellites with higher Σ1 kpc are more susceptible to environmental effects.


Science ◽  
2021 ◽  
Vol 373 (6553) ◽  
pp. 443-448
Author(s):  
Simon C. Stähler ◽  
Amir Khan ◽  
W. Bruce Banerdt ◽  
Philippe Lognonné ◽  
Domenico Giardini ◽  
...  

Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2021 ◽  
Vol 250 ◽  
pp. 02027
Author(s):  
Ibrahim Elnasri

In this study, we numerically and analytically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effect of boundary conditions on the perforation resistance of the studied graded core sandwich panels was discussed. The simulation results showed that the piercing force– displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with un-clumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions. Finally, an analytical model, taken account only gradient in the quasi-static plateau stress, is developed to predict the top skin pic peak load of the graded sandwich panel.


2020 ◽  
Vol 1010 ◽  
pp. 520-525
Author(s):  
Sinar Arzuria Adnan ◽  
Firuz Zainuddin ◽  
Nur Hidayah Ahmad Zaidi ◽  
Nur Afikah Zulkeply ◽  
Nur Maizatul Shima Adzali ◽  
...  

Polyurethane (PU) foam were produced from polyol (PolyGreen R3110) and 4,4- diphenylmethane diisocyanate (Maskiminate 80) with distilled water as a blowing agent. Natural fibers have received more attention from researchers due to their ability to increase the properties of the polymer composites. In this work, PU/Henna foam composites were prepared by used Henna fibers at different loading of 5, 10, 15 and 20 wt. %. The effect of different Henna loading on PU foam were investigated by density, compression test, morphology and water absorption. Core density of PU/Henna foam composites increased with addition Henna compared to control PU and showed highest core density of 85.10 kgm-3. Compressive strength decreased to 0.53 MPa after Henna addition at 5 % PU/Henna foam composites. Henna addition to 20 % PU/Henna foam composites were reduced the compressive strength to 0.97 MPa due to stiffness effect of Henna that contributed to embrittlement of the cell wall. The distorted cell wall and less uniform of cell structure were proved by SEM due to Henna addition as compared to control PU. Water absorption percentage of PU/Henna foam composites were increased with Henna addition as compared to control PU. It is because hydrophilic properties of Henna tendency to absorb moisture.


2020 ◽  
pp. 109963622092507
Author(s):  
Dillon Betts ◽  
Pedram Sadeghian ◽  
Amir Fam

As the effects of climate change become more apparent, it is necessary that environmental impact is considered in every aspect of our society, including the design of new infrastructure. The use of natural materials for building construction is one way to improve the sustainability of infrastructure and therefore it is important that the behaviour of structures made with natural materials be investigated extensively and well understood. In this study, the performance of sandwich panels constructed with flax fibre-reinforced polymer faces and foam cores under impact loading is studied experimentally and analytically. The parameters of the tests were facing thickness (1, 2 and 3 layers of flax fabric) and core density (32, 64 and 96 kg/m3). Each specimen was 1220 mm long, 152 mm wide and approximately 80 mm thick and was tested by a 10.41 kg drop weight impact at mid-span. Each specimen was tested multiple times starting at a drop height of 100 mm and increasing the height by 100 mm for each subsequent test until ultimate failure. The results indicate that the ultimate impact energy increases with both core density and face thickness. The four main failure modes observed were: compression face crushing, compression face wrinkling, core shear and tension face rupture. The failure modes observed generally matched those observed during similar quasi-static testing. Additionally, a nonlinear incremental iterative model was developed based on the conservation of energy during an impact event and the nonlinear mechanical behaviour of both the fibre-reinforced polymer faces and foam cores. This novel model accurately predicts the total deflection and face strains based on the energy of an impact.


2020 ◽  
Vol 60 (6) ◽  
pp. 066015
Author(s):  
F. Koechl ◽  
R. Ambrosino ◽  
P. Belo ◽  
M. Cavinato ◽  
G. Corrigan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document