Marine Renewable Energy and Environmental Interactions: Baseline Assessments of Seabirds, Marine Mammals, Sea Turtles and Benthic Communities on the Oregon Shelf

Author(s):  
Sarah K. Henkel ◽  
Robert M. Suryan ◽  
Barbara A. Lagerquist
2019 ◽  
Vol 7 (2) ◽  
pp. 22 ◽  
Author(s):  
Francisco Francisco ◽  
Jan Sundberg

Techniques for marine monitoring have been greatly evolved over the past decades, making the acquisition of environmental data safer, more reliable and more efficient. On the other hand, the marine renewable energy sector has introduced dissimilar ways of exploring the oceans. Marine energy is mostly harvested in murky and high energetic places where conventional data acquisition techniques are impractical. This new frontier on marine operations brings the need for finding new techniques for environmental data acquisition, processing and analysis. Modern sonar systems, operating at high frequencies, can acquire detailed images of the underwater environment. Variables such as occurrence, size, class and behavior of a variety of aquatic species of fish, birds, and mammals that coexist within marine energy sites can be monitored using imaging sonar systems. Although sonar images can provide high levels of detail, in most of the cases they are still difficult to decipher. In order to facilitate the classification of targets using sonar images, this study introduces a framework of extracting visual features of marine animals that would serve as unique signatures. The acoustic visibility measure (AVM) is here introduced as technique of identification and classification of targets by comparing the observed size with a standard value. This information can be used to instruct algorithms and protocols in order to automate the identification and classification of underwater targets using imaging sonar systems. Using image processing algorithms embedded in Proviwer4 and FIJI software, this study found that acoustic images can be effectively used to classify cod, harbour and grey seals, and orcas through their size, shape and swimming behavior. The sonar images showed that cod occurred as bright, 0.9 m long, ellipsoidal targets shoaling in groups. Harbour seals occurred as bright torpedo-like fast moving targets, whereas grey seals occurred as bulky-ellipsoidal targets with serpentine movements. Orca or larger marine mammals occurred with relatively low visibility on the acoustic images compared to their body size, which measured between 4 m and 7 m. This framework provide a new window of performing qualitative and quantitative observations of underwater targets, and with further improvements, this method can be useful for environmental studies within marine renewable energy farms and for other purposes.


2020 ◽  
Vol 8 (9) ◽  
pp. 704
Author(s):  
Garrett Staines ◽  
Gayle Barbin Zydlewski ◽  
Haley A. Viehman ◽  
Rachel Kocik

Coastal regions are highly used by humans. The growing marine renewable energy (MRE) industry will add to existing anthropogenic pressures in these regions. Regulatory bodies require animal risk assessment before new industrial activities can progress, and MRE is no exception. Preliminary data of marine mammal use of an MRE device deployment location could be informative to permitting. A combination of downlooking hydroacoustics using an echosounder and acoustic camera (imaging sonar) was used to provide a number of large targets (proxy for large fish and marine mammals) in an area of interest for MRE tidal turbine deployment in Western Passage, Maine, USA. Data were collected in May, June, August, and September of 2010 and 2011. Of the nine large targets confirmed to be animals, eight were porpoises and one was a shark. Few large targets were observed in May and June, with the majority (90%) being present in August and September of both years. The most large targets were observed when tidal current speed was less than 1 m·s−1. These data provide a preliminary assessment of large targets in a single location over sixteen 24-h surveys. The aforementioned methodology could be used for future pre- and post-installation assessments at MRE device deployment locations. Their use in concert with visual and passive acoustic monitoring can provide water depth usage by marine mammals, which is a metric that is difficult to assess with passive acoustic and visual techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Emma V. Sheehan ◽  
Sarah C. Gall ◽  
Sophie L. Cousens ◽  
Martin J. Attrill

Concern over global climate change as a result of fossil fuel use has resulted in energy production from renewable sources. Marine renewable energy devices provide clean electricity but can also cause physical disturbance to the local environment. There is a considerable paucity of ecological data at potential marine renewable energy sites that is needed to assess potential future impacts and allow optimal siting of devices. Here, we provide a baseline benthic survey for the Big Russel in Guernsey, UK, a potential site for tidal energy development. To assess the suitability of proposed sites for marine renewable energy in the Big Russel and to identify potential control sites, we compared species assemblages and habitat types. This baseline survey can be used to select control habitats to compare and monitor the benthic communities after installation of the device and contribute towards the optimal siting of any future installation.


2021 ◽  
Vol 9 (8) ◽  
pp. 864
Author(s):  
Anke Bender ◽  
Olivia Langhamer ◽  
Markus Molis ◽  
Jan Sundberg

Past studies have revealed higher levels of biodiversity, total abundance, and size of individuals around offshore installations of renewable energy. This study investigated the effects of Lysekil wave power park (area 0.5 km2) on the abundance and carapace size of decapods at the Swedish west coast. For that purpose, decapods were caught with cages during four consecutive summers. Two types of cages were applied to catch a wide range of decapod species and sizes. The abundance and size of decapods were not significantly different within the wave power park and up to a distance of 360 m outside of it. The catch rate, i.e., number of decapods caught in 24 h, was not significantly different among sampling locations but revealed inter-annual variation for both cage types. The results suggest a limited role of the incidental no-take zone of the small Lysekil wave power park on the abundance and size of local decapods. However, neither were negative impacts, such as decreasing abundances or smaller carapace sizes, discovered. As an increase in the number of marine renewable energy production sites is foreseen, a scaled-up and larger study addressing MPA networks and other environmental interactions should be considered.


2021 ◽  
Vol 9 (8) ◽  
pp. 810
Author(s):  
Francisco X. Correia da Fonseca ◽  
Luís Amaral ◽  
Paulo Chainho

Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2870 ◽  
Author(s):  
Jingjing Xue ◽  
Reza Ahmadian ◽  
Roger Falconer

Marine renewable energy, including tidal renewable energy, is one of the less exploited sources of energy that could contribute to energy demand, while reducing greenhouse gas emissions. Amongst several proposals to build tidal range structure (TRS), a tidal lagoon has been proposed for construction in Swansea Bay, in the South West of the UK, but this scheme was recently rejected by the UK government due to the high electricity costs. This decision makes the optimisation of such schemes more important for the future. This study proposes various novel approaches by breaking the operation into small components to optimise the operation of TRS using a widely used 0-D modelling methodology. The approach results in a minimum 10% increase in energy output, without the inclusion of pumping, in comparison to the maximum energy output using a similar operation for all tides. This increase in energy will be approximately 25% more when pumping is included. The optimised operation schemes are used to simulate the lagoon operation using a 2-D model and the differences between the results are highlighted.


Sign in / Sign up

Export Citation Format

Share Document