Powering the Blue Economy: Exploring Opportunities for Marine Renewable Energy in Various Maritime and Distributed Markets

2018 ◽  
Author(s):  
Not Given Author
2021 ◽  
Vol 8 ◽  
Author(s):  
Natalia Serpetti ◽  
Steven Benjamins ◽  
Stevie Brain ◽  
Maurizio Collu ◽  
Bethany J. Harvey ◽  
...  

Aquaculture and marine renewable energy are two expanding sectors of the Blue Economy in Europe. Assessing the long-term environmental impacts in terms of eutrophication and noise is a priority for both the EU Water Framework Directive and the Marine Strategy Framework Directive, and cumulative impacts will be important for the Maritime Spatial Planning under the Integrated Maritime Policy. With the constant expansion of aquaculture production, it is expected that farms might be established further offshore in more remote areas, as high-energy conditions offer an opportunity to generate more power locally using Marine Renewable Energy (MRE) devices. A proposed solution is the co-location of MRE devices and aquaculture systems using Multi-Purpose Platforms (MPPs) comprising offshore wind turbines (OWTs) that will provide energy for farm operations as well as potentially shelter the farm. Disentangling the impacts, conflicts and synergies of MPP elements on the surrounding marine ecosystem is challenging. Here we created a high-resolution spatiotemporal Ecospace model of the West of Scotland, in order to assess impacts of a simple MPP configuration on the surrounding ecosystem and how these impacts can cascade through the food web. The model evaluated the following specific ecosystem responses: (i) top-down control pathways due to distribution changes among top-predators (harbor porpoise, gadoids and seabirds) driven by attraction to the farming sites and/or repulsion/killing due to OWT operations; (ii) bottom-up control pathways due to salmon farm activity providing increasing benthic enrichment predicated by a fish farm particle dispersal model, and sediment nutrient fluxes to the water column by early diagenesis of organic matter (recycled production). Weak responses of the food-web were found for top-down changes, whilst the results showed high sensitivity to increasing changes of bottom-up drivers that cascaded through the food-web from primary producers and detritus to pelagic and benthic consumers, respectively. We assessed the sensitivity of the model to each of these impacts and the cumulative effects on the ecosystem, discuss the capabilities and limitations of the Ecospace modeling approach as a potential tool for marine spatial planning and the impact that these results could have for the Blue Economy and the EU’s New Green Deal.


2020 ◽  
Vol 54 (6) ◽  
pp. 114-125
Author(s):  
Robert J. Cavagnaro ◽  
Andrea E. Copping ◽  
Rebecca Green ◽  
David Greene ◽  
Scott Jenne ◽  
...  

AbstractMarine renewable energy (MRE) encompasses the harvest of energy from the movement of ocean waters in the form of either currents or waves, as well as temperature and salinity differentials. To date, most MRE development has focused on utility-scale electrical grid generation, but a growing body of work focuses on non-grid applications in the blue economy where MRE could provide power on-site and at the scale needed for specific maritime sectors. One of the blue economy sectors with promising applications for MRE is ocean observations using both mobile and stationary platforms. This paper documents the steps and results of engaging with experts across the myriad ocean observation platforms and capabilities to inform five use cases. These use cases include descriptions of specific ocean observation applications performing measurements of high societal value (e.g., data for weather forecasting and tsunami detection) that closely resemble specific sensing systems and, in most cases, are placed in a particular area of the ocean. Rapid resource assessments (i.e., first-order estimates) were performed at these locations to determine the suitability of marine and other renewable energy sources. From the information gathered so far, MRE has significant potential to enable improved ocean observation missions, expand ocean observing capacity, and develop as an industry in parallel with the needs of our changing oceans.


2021 ◽  
Vol 9 (8) ◽  
pp. 810
Author(s):  
Francisco X. Correia da Fonseca ◽  
Luís Amaral ◽  
Paulo Chainho

Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2870 ◽  
Author(s):  
Jingjing Xue ◽  
Reza Ahmadian ◽  
Roger Falconer

Marine renewable energy, including tidal renewable energy, is one of the less exploited sources of energy that could contribute to energy demand, while reducing greenhouse gas emissions. Amongst several proposals to build tidal range structure (TRS), a tidal lagoon has been proposed for construction in Swansea Bay, in the South West of the UK, but this scheme was recently rejected by the UK government due to the high electricity costs. This decision makes the optimisation of such schemes more important for the future. This study proposes various novel approaches by breaking the operation into small components to optimise the operation of TRS using a widely used 0-D modelling methodology. The approach results in a minimum 10% increase in energy output, without the inclusion of pumping, in comparison to the maximum energy output using a similar operation for all tides. This increase in energy will be approximately 25% more when pumping is included. The optimised operation schemes are used to simulate the lagoon operation using a 2-D model and the differences between the results are highlighted.


Marine Policy ◽  
2009 ◽  
Vol 33 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Mark A. Shields ◽  
Lora Jane Dillon ◽  
David K. Woolf ◽  
Alex T. Ford

2017 ◽  
Vol 19 ◽  
pp. 292-303 ◽  
Author(s):  
J. Loxton ◽  
A.K. Macleod ◽  
C.R. Nall ◽  
T. McCollin ◽  
I. Machado ◽  
...  

Marine Policy ◽  
2019 ◽  
Vol 100 ◽  
pp. 334-341 ◽  
Author(s):  
Xiangbo Yang ◽  
Ning Liu ◽  
Peidong Zhang ◽  
Zhen Guo ◽  
Changlei Ma ◽  
...  

2015 ◽  
Vol 83 ◽  
pp. 1268-1278 ◽  
Author(s):  
S.D. Weller ◽  
L. Johanning ◽  
P. Davies ◽  
S.J. Banfield

Author(s):  
Ji Wang ◽  
Haifeng Wang ◽  
Yuxin Liu ◽  
Libo Chen ◽  
Jiuting Tang

Sign in / Sign up

Export Citation Format

Share Document