Protective Effect of Taurine on Mice with Doxorubicin-induced Acute Kidney Injury

Author(s):  
Yon-Suk Kim ◽  
Si-Heung Sung ◽  
Yujiao Tang ◽  
Eun-Ju Choi ◽  
Young-Jin Choi ◽  
...  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhiya Deng ◽  
Maomao Sun ◽  
Jie Wu ◽  
Haihong Fang ◽  
Shumin Cai ◽  
...  

AbstractOur previous studies showed that silent mating-type information regulation 2 homologue-1 (SIRT1, a deacetylase) upregulation could attenuate sepsis-induced acute kidney injury (SAKI). Upregulated SIRT1 can deacetylate certain autophagy-related proteins (Beclin1, Atg5, Atg7 and LC3) in vitro. However, it remains unclear whether the beneficial effect of SIRT1 is related to autophagy induction and the underlying mechanism of this effect is also unknown. In the present study, caecal ligation and puncture (CLP)-induced mice, and an LPS-challenged HK-2 cell line were established to mimic a SAKI animal model and a SAKI cell model, respectively. Our results demonstrated that SIRT1 activation promoted autophagy and attenuated SAKI. SIRT1 deacetylated only Beclin1 but not the other autophagy-related proteins in SAKI. SIRT1-induced autophagy and its protective effect against SAKI were mediated by the deacetylation of Beclin1 at K430 and K437. Moreover, two SIRT1 activators, resveratrol and polydatin, attenuated SAKI in CLP-induced septic mice. Our study was the first to demonstrate the important role of SIRT1-induced Beclin1 deacetylation in autophagy and its protective effect against SAKI. These findings suggest that pharmacologic induction of autophagy via SIRT1-mediated Beclin1 deacetylation may be a promising therapeutic approach for future SAKI treatment.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Cheol Ho Park ◽  
Bin Lee ◽  
Myeonggil Han ◽  
Woo Joong Rhee ◽  
Man Sup Kwak ◽  
...  

AbstractSodium-glucose cotransporter 2 inhibitors, which are recently introduced as glucose-lowering agents, improve cardiovascular and renal outcomes in patients with diabetes mellitus. These drugs also have beneficial effects in various kidney disease models. However, the effect of SGLT2 inhibitors on cisplatin-induced acute kidney injury (AKI) and their mechanism of action need to be elucidated. In this study, we investigated whether canagliflozin protects against cisplatin-induced AKI, depending on adenosine monophosphate-activated protein kinase (AMPK) activation and following induction of autophagy. In the experiments using the HK-2 cell line, cell viability assay and molecular analysis revealed that canagliflozin protected renal proximal tubular cells from cisplatin, whereas addition of chloroquine or compound C abolished the protective effect of canagliflozin. In the mouse model of cisplatin-induced AKI, canagliflozin protected mice from cisplatin-induced AKI. However, treatment with chloroquine or compound C in addition to administration of cisplatin and canagliflozin eliminated the protective effect of canagliflozin. Collectively, these findings indicate that canagliflozin protects against cisplatin-induced AKI by activating AMPK and autophagy in renal proximal tubular cells.


2020 ◽  
Vol 19 (3) ◽  
pp. 270-276
Author(s):  
Jianying Wang ◽  
Xiaoting Yu

Acute kidney injury is a severe complication of sepsis. We have shown a protective effect of Platycodin D on sepsis induced acute kidney injury in an animal model that employs cecal ligation and puncture. Cecal ligation and puncture induced a series of degenerative changes in kidney, such as edema, hyperemia, and expansion in glomerular capillary, and inflammatory cells infiltration that were attenuated by Platycodin D. Also, rise in proinflammatory cytokine levels in septic rats was blunted by Platycodin D. Furthermore, Platycodin D administration reduced rise in serum levels of kidney injury markers-blood urea nitrogen and serum creatinine-in septic rats. Moreover, Platycodin D administration also suppressed the cell apoptosis in kidney that was associated with enhanced B-cell lymphoma 2 protein and reduced cleaved cysteine-aspartic protease-3 and BCL2-associated X protein. Lastly, Platycodin D administration attenuated sepsis-induced increase of phospho (p)-extracellular signal-regulated kinase, p-c-Jun NH2-terminal kinase, and p-p38. In conclusion, Platycodin D demonstrated protective effect against sepsis induced acute kidney injury through inactivation of mitogen activated protein kinase pathways, thus providing promising therapeutic strategy for the treatment of sepsis.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Byeong Woo KIm ◽  
Sun hee Kim ◽  
Ki beom Bae

Abstract Background and Aims Although the mechanism of contrast-induced acute kidney injury (CI-AKI) is not fully known, the imbalance of vasoconstrictive and vasodilative mediators plays a major role. Prostaglandin E2 (PGE2) is one of the vasodilators involved in this process. Inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) causes elevation of PGE2 level in tissue by delaying the rapid degradation of PGE2 by the enzyme. We tested the hypothesis that the 15-PGE2 inhibitor would protect against CI-AKI in a mouse model and attempted to elucidate the mechanism involved. Method 10-week aged male C57/BL6 Mice were injected with 10gI/kg of iodixanol by tail vein. Renal blood flow measurement, right nephrectomy, and blood sampling were taken at 48 hours after iodixanol injection. The 15-PGDH inhibitor was injected before and after iodixanol administration. Plasma creatinine, NGAL, KIM-1 were measured as biomarkers for renal function. Histological evaluation was analyzed by the necrosis scoring system and TUNEL assay. Arteriolar area of outer medulla was analyzed by α-smooth muscle actin stain. Renal blood flow was measured by the non-invasive laser doppler. Results Plasma creatinine (1.94±0.75 vs 1.11±0.44 mg/dL, p=0.005), NGAL (299.7±115.87 vs 140.4±76.56 ng/mL, p=0.004), and KIM-1 (2.09±2.34 vs 0.43±0.89 ng/mL, p=0.024) levels were significantly lower when the 15-PGDH inhibitor was injected before and after iodixanol administration than the vehicle group. But no significant renal protective effect was shown when the 15-PGDH inhibitor was injected before or after iodixanol administration. The 15-PGDH inhibitor administration before and after iodixanol injection showed a significantly wider renal arteriolar area (683.63±248.46 vs 1132.97±357.46 μm2, p=0.039) and larger renal blood flow (360.0±49.72 vs 635.1±27.20, p=0.011) than vehicle administration. Conclusion The 15-PGDH inhibitor has a renal protective effect against CI-AKI in mice by increasing renal blood flow when injected intravenously before and after iodine contrast media administration.


The Analyst ◽  
2020 ◽  
Vol 145 (10) ◽  
pp. 3620-3625
Author(s):  
Yiting Hu ◽  
Xie-an Yu ◽  
Ying Zhang ◽  
Ran Zhang ◽  
Xuefei Bai ◽  
...  

A rapid and sensitive method for NGAL detection has been developed to predict acute kidney injury and evaluate the protective effect of drug on renal disease.


2018 ◽  
Vol 33 (suppl_1) ◽  
pp. i108-i108
Author(s):  
Kyoung Hye Kong ◽  
Hyung Jung Oh ◽  
Dong-Ryeol Ryu ◽  
Seung-Jung Kim ◽  
Duk-Hee Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document