Convergence Time Analysis of Multi-constellation Precise Point Positioning Based on iGMAS Products

Author(s):  
Yulong Ge ◽  
Baoqi Sun ◽  
Shengli Wang ◽  
Pengli Shen ◽  
Jinhai Liu
2014 ◽  
Vol 67 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Aigong Xu ◽  
Zongqiu Xu ◽  
Xinchao Xu ◽  
Huizhong Zhu ◽  
Xin Sui ◽  
...  

On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.


2018 ◽  
Vol 144 (2) ◽  
pp. 04018002 ◽  
Author(s):  
Mohammed Abou Galala ◽  
Mosbeh R. Kaloop ◽  
Mostafa M. Rabah ◽  
Zaki M. Zeidan

2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


GEOMATICA ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

Single-frequency precise point positioning (PPP) presents a cost-effective positioning technique for a large number of users. However, it possesses low positioning accuracy and convergence time compared with the dual-frequency PPP. Single-frequency PPP commonly employs GPS satellite systems that suffer from poor satellite geometry, especially in dense urban areas. We develop a new single-frequency PPP model that combines the observations of current GNSS constellations, including GPS, GLONASS, Galileo and Beidou. The MGEX IGS final precise products are utilized to account for the orbital and clock errors, while the IGS final global ionospheric maps (GIM) model is used to correct for the ionospheric delay. The GNSS inter-system biases are treated as additional unknowns in the estimation process. The con tri bution of the additional GNSS observations to single-frequency PPP is assessed through solution comparison with its traditional GPS-only counterpart. Various GNSS combinations are considered in the assessment, including GPS/GLONASS, GPS/Galileo, GPS/BeiDou and all-constellation GNSS. It is shown that the additional GNSS observations enhance the PPP solution accuracy and convergence time in comparison with the tra di tional GPS-only solution. Except for stations with a sufficient number of tracked BeiDou satellites, both Galileo and BeiDou have marginal effects on the positioning accuracy due to their limited number of satel lites. However, for stations with a sufficient number of visible BeiDou satellites, an average of 40% PPP accuracy improvement is obtained. The major contribution to the PPP accuracy enhancement is obtained from GLONASS satellite observations.


2020 ◽  
Vol 12 (11) ◽  
pp. 1853
Author(s):  
Jin Wang ◽  
Guanwen Huang ◽  
Qin Zhang ◽  
Yang Gao ◽  
Yuting Gao ◽  
...  

In this study, an uncombined precise point positioning (PPP) model was established and was used for estimating fractional cycle bias (FCB) products and for achieving ambiguity resolution (AR), using GPS, BDS-2, and Galileo raw observations. The uncombined PPP model is flexible and efficient for positioning services and generating FCB. The FCBs for GPS, BDS-2, and Galileo were estimated using the uncombined PPP model with observations from the Multi-GNSS Experiment (MGEX) stations. The root mean squares (RMSs) of the float ambiguity a posteriori residuals associated with all of the three GNSS constellations, i.e., GPS, BDS-2, and Galileo, are less than 0.1 cycles for both narrow-lane (NL) and wide-lane (WL) combinations. The standard deviation (STD) of the WL combination FCB series is 0.015, 0.013, and 0.006 cycles for GPS, BDS-2, and Galileo, respectively, and the counterpart for the NL combination FCB series is 0.030 and 0.0184 cycles for GPS and Galileo, respectively. For the BDS-2 NL combination FCB series, the STD of the inclined geosynchronous orbit (IGSO) satellites is 0.0156 cycles, while the value for the medium Earth orbit (MEO) satellites is 0.073 cycles. The AR solutions produced by the uncombined multi-GNSS PPP model were evaluated from the positioning biases and the success fixing rate of ambiguity. The experimental results demonstrate that the growth of the amount of available satellites significantly improves the PPP performance. The three-dimensional (3D) positioning accuracies associated with the PPP ambiguity-fixed solutions for the respective only-GPS, GPS/BDS-2, GPS/Galileo, and GPS/BDS-2/Galileo models are 1.34, 1.19, 1.21, and 1.14 cm, respectively, and more than a 30% improvement is achieved when compared to the results related to the ambiguity-float solutions. Additionally, the convergence time based on the GPS/BDS-2/Galileo observations is only 7.5 min for the ambiguity-fixed solutions, and the results exhibit a 53% improvement in comparison to the ambiguity-float solutions. The values of convergence time based on the only-GPS observations are estimated as 22 and 10.5 min for the ambiguity-float and ambiguity-fixed solutions, respectively. Lastly, the success fixing rate of ambiguity is also dramatically raised for the multi-GNSS PPP AR. For example, the percentage is approximately 99% for the GPS/BDS-2/Galileo solution over a 10 min processing period. In addition, the inter-system bias (ISB) between GPS, BDS-2, and Galileo, which is carefully considered in the uncombined multi-GNSS PPP method, is modeled as a white noise process. The differences of the ISB series between BDS-2 and Galileo indicate that the clock datum bias of the satellite clock offset estimation accounts for the variation of the ISB series.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2762 ◽  
Author(s):  
Lina He ◽  
Hairui Zhou ◽  
Yuanlan Wen ◽  
Xiufeng He

Although there are already several real-time precise positioning service providers, unfortunately, not all users can use the correction information due to either cost of the service and limitation of their equipment or out of the service coverage. An alternative way is to enhance the accuracy of the predicted satellite clocks for precise real-time positioning. Based on the study of existing prediction models, an improved model combing the spectrum analysis (SA) and the generalized regression neural network (GRNN) model is proposed especially for BeiDou satellite navigation system (BDS)-2 satellites. The periodic terms and GRNN-related parameters including length and interval of sample data, as well as a smooth factor, are optimized satellite by satellite to consider satellite-specific characteristics for all the fourteen BDS-2 satellites. The improved model is validated by comparing the predicted clocks of existing models and the improved model with precisely estimated ones. The bias of the predicted clock is within ±0.5 ns over three hours and better than that of the other models and can be used for several real-time precise applications. The clock prediction is further evaluated by applying clock corrections to precise point positioning (PPP) in both static and kinematic mode for eight IGS (International GNSS Service) MGEX (Multi-GNSS Experiment) stations in the Asia-Pacific region. In the static PPP, the improved model is validated to be effective, and position accuracies of some IGS MGEX stations achieve more than 30.0% improvements on average for each component, which enables us to obtain sub-decimeter positioning. In the kinematic PPP, the improved model performs much better than the others in terms of both the convergence time and the position accuracy. The convergence time can be shortened from 1–2 h to 0.5–1 h, while the position accuracy is enhanced by 15.4%, 21.6% and 19.3% on average in east, north and up component, respectively.


2018 ◽  
Vol 8 (12) ◽  
pp. 2537 ◽  
Author(s):  
Tianjun Liu ◽  
Jian Wang ◽  
Hang Yu ◽  
Xinyun Cao ◽  
Yulong Ge

The real-time precise point positioning (RT PPP) technique has attracted increasing attention due to its high-accuracy and real-time performance. However, a considerable initialization time, normally a few hours, is required in order to achieve the proper convergence of the real-valued ambiguities and other estimate parameters. The RT PPP convergence time may be reduced by combining quad-constellation global navigation satellite system (GNSS), or by using RT ionospheric products to constrain the ionosphere delay. But to improve the performance of convergence and achieve the best positioning solutions in the whole data processing, proper and precise variances of the observations and ionospheric constraints are important, since they involve the processing of measurements of different types and with different accuracy. To address this issue, a weighting approach is proposed by a combination of the weight factors searching algorithm and a moving-window average filter. In this approach, the variances of ionospheric constraints are adjusted dynamically according to the principle that the sum of the quadratic forms of weighted residuals is the minimum, and the filter is applied to combine all epoch-by-epoch weight factors within a time window. To evaluate the proposed approach, datasets from 31 Multi-GNSS Experiment (MGEX) stations during the period of DOY (day of year) 023-054 in 2018 are analyzed with different positioning modes and different data processing methods. Experimental results show that the new weighting approach can significantly improve the convergence performance, and that the maximum improvement rate reaches 35.9% in comparison to the traditional method of priori variance in the static dual-frequency positioning mode. In terms of the RMS (Root Mean Square) statistics of positioning errors calculated by the new method after filter convergence, the same accuracy level as that of RT PPP without constraints can be achieved.


2016 ◽  
Vol 10 (4) ◽  
Author(s):  
Akram Afifi ◽  
Ahmed El-Rabbany

AbstractThis paper introduces a comparison between dual-frequency precise point positioning (PPP) post-processing model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou and real-time PPP model. A drawback of a single GNSS system such as GPS, however, is the availability of sufficient number of visible satellites in urban areas. Combining GNSS observations offers more visible satellites to users, which in turn is expected to enhance the satellite geometry and the overall positioning solution. However, combining several GNSS observables introduces additional biases, which require rigorous modelling, including the GNSS time offsets and hardware delays. In this paper, a GNSS post-processing PPPP model is developed using ionosphere-free linear combination. The additional biases of the GPS, Galileo, and BeiDou combination are accounted for through the introduction of a new unknown parameter, which is identified as the inter-system bias, in the PPP mathematical model. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS / Galileo / BeiDou PPP solution and to handle the newly inter-system bias. A total of four data sets at four IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the IGS-MGEX network are used to correct of the GPS, Galileo and BeiDou measurements. For the real-time PPP model the corrections of the satellites orbit and clock are obtained through the international GNSS service (IGS) real-time service (RTS). GPS and Galileo Observations are used for the GNSS RTS-IGS PPP model as the RTS-IGS satellite products are not available for BeiDou satellites. This paper provides the GNSS RTS-IGS PPP model using different satellite clock corrections namely: IGS01, IGC01, IGS01, and IGS03. All PPP models results of convergence time and positioning precision are compared to the traditional GPS-only PPP model. It is shown that combining GPS, Galileo, and BeiDou observations in a PPP model reduces the convergence time by 25 % compared with the GPS-only PPP model.


Sign in / Sign up

Export Citation Format

Share Document