scholarly journals Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ana Rey-Rico ◽  
Henning Madry ◽  
Magali Cucchiarini

Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Caining Wen ◽  
Limei Xu ◽  
Xiao Xu ◽  
Daping Wang ◽  
Yujie Liang ◽  
...  

AbstractArticular cartilage repair is a critical issue in osteoarthritis (OA) treatment. The insulin-like growth factor (IGF) signaling pathway has been implicated in articular cartilage repair. IGF-1 is a member of a family of growth factors that are structurally closely related to pro-insulin and can promote chondrocyte proliferation, enhance matrix production, and inhibit chondrocyte apoptosis. Here, we reviewed the role of IGF-1 in cartilage anabolism and catabolism. Moreover, we discussed the potential role of IGF-1 in OA treatment. Of note, we summarized the recent progress on IGF delivery systems. Optimization of IGF delivery systems will facilitate treatment application in cartilage repair and improve OA treatment efficacy.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 514 ◽  
Author(s):  
Ana Rey-Rico ◽  
Magali Cucchiarini

Controlled delivery of gene transfer vectors is a powerful strategy to enhance the temporal and spatial presentation of therapeutic agents in a defined target. Hydrogels are adapted biomaterials for gene delivery capable of acting as a localized depot of genes while maintaining the long term local availability of DNA vectors at a specific location. Supramolecular hydrogels based on cyclodextrins (CDs) have attracted considerable attention as potential biomaterials in a broad range of drug delivery applications. Their unique characteristics of thixotropicity and low cytotoxicity due to their production under mild conditions make them potential candidates to form injectable delivery systems. This work aims to provide an overview of the use of CD-based polypseudorotaxane hydrogels as controlled gene delivery systems for different applications in regenerative medicine.


2020 ◽  
pp. 039139882095386
Author(s):  
Wenrun Zhu ◽  
Lu Cao ◽  
Chunfeng Song ◽  
Zhiying Pang ◽  
Haochen Jiang ◽  
...  

Articular cartilage repair remains a great clinical challenge. Tissue engineering approaches based on decellularized extracellular matrix (dECM) scaffolds show promise for facilitating articular cartilage repair. Traditional regenerative approaches currently used in clinical practice, such as microfracture, mosaicplasty, and autologous chondrocyte implantation, can improve cartilage repair and show therapeutic effect to some degree; however, the long-term curative effect is suboptimal. As dECM prepared by proper decellularization procedures is a biodegradable material, which provides space for regeneration tissue growth, possesses low immunogenicity, and retains most of its bioactive molecules that maintain tissue homeostasis and facilitate tissue repair, dECM scaffolds may provide a biomimetic microenvironment promoting cell attachment, proliferation, and chondrogenic differentiation. Currently, cell-derived dECM scaffolds have become a research hotspot in the field of cartilage tissue engineering, as ECM derived from cells cultured in vitro has many advantages compared with native cartilage ECM. This review describes cell types used to secrete ECM, methods of inducing cells to secrete cartilage-like ECM and decellularization methods to prepare cell-derived dECM. The potential mechanism of dECM scaffolds on cartilage repair, methods for improving the mechanical strength of cell-derived dECM scaffolds, and future perspectives on cell-derived dECM scaffolds are also discussed in this review.


2007 ◽  
pp. 283-309 ◽  
Author(s):  
Monika Volesky ◽  
Timothy Charlton ◽  
Jonathan T. Deland

2002 ◽  
pp. 249-262 ◽  
Author(s):  
Mislav Jelic ◽  
Marko Pecina ◽  
Miroslav Haspl ◽  
Anton Brkic ◽  
Slobodan Vukicevic

Sign in / Sign up

Export Citation Format

Share Document