Effect of High and Low Carbohydrate Meals on Sustained Maximum Voluntary Contraction (MVC) after Prolonged Exercise

Author(s):  
T. K. Khong ◽  
V. S. Selvanayagam ◽  
S. H. Hamzah ◽  
P. J. Lim ◽  
A. Yusof
2020 ◽  
Vol 11 (1) ◽  
pp. 193-200
Author(s):  
Elizabeth Saunders ◽  
Brian C. Clark ◽  
Leatha A. Clark ◽  
Dustin R. Grooms

AbstractThe purpose of this study was to quantify head motion between isometric erector spinae (ES) contraction strategies, paradigms, and intensities in the development of a neuroimaging protocol for the study of neural activity associated with trunk motor control in individuals with low back pain. Ten healthy participants completed two contraction strategies; (1) a supine upper spine (US) press and (2) a supine lower extremity (LE) press. Each contraction strategy was performed at electromyographic (EMG) contraction intensities of 30, 40, 50, and 60% of an individually determined maximum voluntary contraction (MVC) (±10% range for each respective intensity) with real-time, EMG biofeedback. A cyclic contraction paradigm was performed at 30% of MVC with US and LE contraction strategies. Inertial measurement units (IMUs) quantified head motion to determine the viability of each paradigm for neuroimaging. US vs LE hold contractions induced no differences in head motion. Hold contractions elicited significantly less head motion relative to cyclic contractions. Contraction intensity increased head motion in a linear fashion with 30% MVC having the least head motion and 60% the highest. The LE hold contraction strategy, below 50% MVC, was found to be the most viable trunk motor control neuroimaging paradigm.


2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Lucien Robinault ◽  
Aleš Holobar ◽  
Sylvain Crémoux ◽  
Usman Rashid ◽  
Imran Khan Niazi ◽  
...  

Over recent years, a growing body of research has highlighted the neural plastic effects of spinal manipulation on the central nervous system. Recently, it has been shown that spinal manipulation improved outcomes, such as maximum voluntary force and limb joint position sense, reflecting improved sensorimotor integration and processing. This study aimed to further evaluate how spinal manipulation can alter neuromuscular activity. High density electromyography (HD sEMG) signals from the tibialis anterior were recorded and decomposed in order to study motor unit changes in 14 subjects following spinal manipulation or a passive movement control session in a crossover study design. Participants were asked to produce ankle dorsiflexion at two force levels, 5% and 10% of maximum voluntary contraction (MVC), following two different patterns of force production (“ramp” and “ramp and maintain”). A significant decrease in the conduction velocity (p = 0.01) was observed during the “ramp and maintain” condition at 5% MVC after spinal manipulation. A decrease in conduction velocity suggests that spinal manipulation alters motor unit recruitment patterns with an increased recruitment of lower threshold, lower twitch torque motor units.


Author(s):  
Amrish O. Chourasia ◽  
Mary E. Sesto ◽  
Youngkyoo Jung ◽  
Robert S. Howery ◽  
Robert G. Radwin

Work place exertions may include muscle shortening (concentric) or muscle lengthening (eccentric) contractions. This study investigates the upper limb mechanical properties and magnetic resonance images (MRI) of the involved muscles following submaximal eccentric and concentric exertions. Twelve participants were randomly assigned to perform at 30° per second eccentric or concentric forearm supination exertions at 50% isometric maximum voluntary contraction (MVC) for 30 minutes. Measurement of mechanical stiffness, isometric MVC, localized discomfort and MRI supinator: extensor signal intensity ratio was done before, immediately after, 1 hour after and 24 hours after the bout of exercise. A 53% average decrease in mechanical stiffness after 1 hour was observed for the eccentric group (p< 0.05) compared to a 1% average decrease for the concentric group (p> 0.05). Edema, indicative of swelling, was observed 24 hrs after exercise, with an average increase in the MRI supinator: extensor signal intensity ratio of 36% for the eccentric group and less than 10% for the concentric group (p<0.05).


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Ilario Puglia ◽  
Michele Balsamo ◽  
Marco Vukich ◽  
Valfredo Zolesi

The study and analysis of human physiology during short- and long-duration space flights are the most valuable approach in order to evaluate the effect of microgravity on the human body and to develop possible countermeasures in prevision of future exploratory missions and Mars expeditions. Hand performances such as force output and manipulation capacity are fundamental for astronauts’ intra- and extravehicular activities. Previous studies on upper limb conducted on astronauts during short-term missions (10 days) indicated a temporary partial reduction in the handgrip maximum voluntary contraction (MVC) followed by a prompt recovery and adaptation to weightlessness during the last days of the mission. In the present study, we report on the “Crew’s Health: Investigation on Reduced Operability” (CHIRO) protocol, developed for handgrip and pinch force investigations, performed during the six months increment 7 and increment 8 (2003-2004) onboard International Space Station (ISS). We found that handgrip and pinch force performance are reduced during long-term increments in space and are not followed by adaptation during the mission, as conversely reported during short-term increment experiments. The application of protocols developed in space will be eligible to astronauts during long-term space missions and to patients affected by muscle atrophy diseases or nervous system injury on Earth.


1994 ◽  
Vol 77 (2) ◽  
pp. 987-997 ◽  
Author(s):  
I. Zijdewind ◽  
D. Kernell

In normal subjects, maximum voluntary contraction (MVC) and electrical ulnar nerve stimulation (UNS; 30-Hz bursts of 0.33 s) were systematically compared with regard to the forces generated in different directions (abduction/adduction and flexion) and at different degrees of index finger abduction. With a “resting” hand position in which there was no index finger abduction, UNS produced about one-half of the abduction force elicited by an MVC (mean ratio 51%). Qualitatively, such a discrepancy would be expected, because UNS activates two index finger muscles with opposing actions in the abduction/adduction plane of torques: the first dorsal interosseus (FDI) and the first palmar interosseus (FPI). The abduction forces produced by MVC and UNS were very sensitive to index finger abduction angle: at a maximum degree of abduction, the UNS-generated force even reversed its direction of action to adduction (with FPI dominating) and the abduction MVC declined to 37% of that in the resting hand position. Inasmuch as these declines in MVC- and UNS-generated abduction force could not be explained by a change in moment arm, the main alternative seemed to be abduction-associated alterations in FDI fiber length (analysis by previously published biomechanical data). The FDI and FPI were further compared by application of a UNS-generated fatigue test (5-min burst stimulation), with the index finger kept at a "neutral" angle, i.e., the abduction angle at which, in the unfatigued state, the forces of the FDI and FPI were in balance (zero net UNS-generated abduction/adduction force).(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 95 (3) ◽  
pp. 1045-1054 ◽  
Author(s):  
C. J. Houtman ◽  
D. F. Stegeman ◽  
J. P. Van Dijk ◽  
M. J. Zwarts

To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.


Volume 2 ◽  
2004 ◽  
Author(s):  
Serdar Aritan ◽  
S. Olutunde Oyadiji ◽  
Roger M. Bartlett

The aim of this study was to characterise the bulk modulus properties of the upper arm under relaxed and controlled contraction which is defined as 25% of the maximum voluntary contraction. A new testing machine was designed to generate constant load on the upper arm and measure the deformation over time. The machine consists of a device which is effectively a cuff that applies controllable pressure on a 47 mm wide band of the upper arm. Six different loads (10, 20, 30, 40, 50 and 60 kgf) were applied over a period of time of up to a maximum of 120 seconds. The deflection-time curves obtained show strongly non-linear response of the bulk tissue. The non-linearity manifested by these deflection-time curves is in terms of both time- and load-dependency. For each load, the creep behaviour follows an exponential law typical of viscoelastic materials. At low loads (below 30kgf), the creep response increases fairly linearly as the load is increased from 10 kgf to 30 kgf. But at high loads (above 30 kgf), the creep response increases only slightly as the load is increased from 30 kgf to 60 kgf. Beyond a load of 60 kgf, the deflection or creep becomes negligible. This implies that the upper arm has reached the state of incompressibility. The creep behaviour of the upper arm was simulated using four Voigt viscoelastic models in series. The three obvious soft tissues of the upper arm, namely skin, fat and muscle, were modelled in series. The effects of blood vessels and connective tissue were also modelled in series with the other tissues.


Author(s):  
Eduardo Martinez-Valdes ◽  
Francesco Negro ◽  
Michail Arvanitidis ◽  
Dario Farina ◽  
Deborah Falla

At high forces, the discharge rates of lower and higher threshold motor units (MU) are influenced in a different way by muscle pain. These differential effects may be particularly important for performing contractions at different speeds since the proportion of lower and higher threshold MUs recruited varies with contraction velocity. We investigated whether MU discharge and recruitment strategies are differentially affected by pain depending on their recruitment threshold (RT), across a range of contraction speeds. Participants performed ankle dorsiflexion sinusoidal-isometric contractions at two frequencies (0.25Hz and 1Hz) and two modulation amplitudes [5% and 10% of the maximum voluntary contraction (MVC)] with a mean target torque of 20%MVC. High-density surface electromyography recordings from the tibialis anterior muscle were decomposed and the same MUs were tracked across painful (hypertonic saline injection) and non-painful conditions. Torque variability, mean discharge rate (MDR), DR variability (DRvar), RT and the delay between the cumulative spike train and the resultant torque output (neuromechanical delay, NMD) were assessed. The average RT was greater at faster contraction velocities (p=0.01) but was not affected by pain. At the fastest contraction speed, torque variability and DRvar were reduced (p<0.05) and MDR was maintained. Conversely, MDR decreased and DRvar and NMD increased significantly during pain at slow contraction speeds (p<0.05). These results show that reductions in contraction amplitude and increased recruitment of higher threshold MUs at fast contraction speeds appears to compensate for the inhibitory effect of nociceptive inputs on lower threshold MUs, allowing the exertion of fast submaximal contractions during pain.


2017 ◽  
Vol 4 (8) ◽  
pp. 170660 ◽  
Author(s):  
Sam Darvishi ◽  
Michael C. Ridding ◽  
Brenton Hordacre ◽  
Derek Abbott ◽  
Mathias Baumert

Restorative brain–computer interfaces (BCIs) have been proposed to enhance stroke rehabilitation. Restorative BCIs are able to close the sensorimotor loop by rewarding motor imagery (MI) with sensory feedback. Despite the promising results from early studies, reaching clinically significant outcomes in a timely fashion is yet to be achieved. This lack of efficacy may be due to suboptimal feedback provision. To the best of our knowledge, the optimal feedback update interval (FUI) during MI remains unexplored. There is evidence that sensory feedback disinhibits the motor cortex. Thus, in this study, we explore how shorter than usual FUIs affect behavioural and neurophysiological measures following BCI training for stroke patients using a single-case proof-of-principle study design. The action research arm test was used as the primary behavioural measure and showed a clinically significant increase (36%) over the course of training. The neurophysiological measures including motor evoked potentials and maximum voluntary contraction showed distinctive changes in early and late phases of BCI training. Thus, this preliminary study may pave the way for running larger studies to further investigate the effect of FUI magnitude on the efficacy of restorative BCIs. It may also elucidate the role of early and late phases of motor learning along the course of BCI training.


Sign in / Sign up

Export Citation Format

Share Document