Visual Comfort Based Algorithmic Control for Roller Shade and Assessment of Potential Energy Savings

Author(s):  
Lakshya Sharma ◽  
Dibakar Rakshit
2021 ◽  
pp. 1420326X2199241
Author(s):  
Hanlin Li ◽  
Dan Wu ◽  
Yanping Yuan ◽  
Lijun Zuo

In the past 30 years, tubular daylight guide systems (TDGSs) have become one of the most popular ways to transport outdoor natural light into the inner space in building design. However, tubular daylight guide systems are not widely used because of the lack of methods to evaluate methods on the suitability of the TDGSs. This study therefore summarizes the daylight performance metrics of TDGSs and presents the estimation methods in terms of field measurements, simulation and empirical formulae. This study focuses on the daylight performance and potential energy savings of TDGSs. Moreover, this study will be helpful for building designers to build healthy, comfortable and energy-saving indoor environment.


Energy Policy ◽  
2012 ◽  
Vol 45 ◽  
pp. 739-751 ◽  
Author(s):  
Jing Ke ◽  
Nina Zheng ◽  
David Fridley ◽  
Lynn Price ◽  
Nan Zhou

2016 ◽  
Vol 50 (4) ◽  
pp. 631-650 ◽  
Author(s):  
N Gentile ◽  
T Goven ◽  
T Laike ◽  
K Sjoberg

Indoor lighting is facing a massive retrofit to LED lighting. Research is needed to assess whether LED-based lighting can promote energy efficiency, boost visual comfort and support biological functions. This field study considered the lighting of four identical classrooms in an upper secondary school in Helsingborg, Sweden. Two classrooms were fitted with state-of-the-art ceiling pendants containing T5 fluorescent tubes and that had a direct/indirect light distribution (the control rooms). The other two classrooms were fitted with an experimental LED indirect lighting system (the experimental rooms). In the classrooms, 72 students aged 17–18 years performed their usual educational activities over a whole academic year. The light environment, electricity consumption, and students’ mood, light perception and saliva cortisol concentration were monitored. The two lighting systems produced only marginal differences. Overall, the experimental rooms were slightly preferred but achieved only small energy savings due to high parasitic losses.


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2014 ◽  
Vol 32 ◽  
pp. 642-650 ◽  
Author(s):  
M. Hanif ◽  
T.M.I. Mahlia ◽  
A. Zare ◽  
T.J. Saksahdan ◽  
H.S.C. Metselaar

Climate ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 26 ◽  
Author(s):  
Giuseppe Rossi ◽  
Paola Iacomussi ◽  
Michele Zinzi

Sign in / Sign up

Export Citation Format

Share Document